
93

Mining Geospatial Relationships from Text

PASQUALE BALSEBRE, Nanyang Technological University, Singapore
DEZHONG YAO, Huazhong University of Science and Technology, China
GAO CONG, Nanyang Technological University, Singapore
WEIMING HUANG, Nanyang Technological University, Singapore
ZHEN HAI, DAMO Academy, Alibaba Group, Singapore

A geospatial Knowledge Graph (KG) is a heterogeneous information network, capable of representing relation-
ships between spatial entities in a machine-interpretable format, and has tremendous applications in logistics
and social networks. Existing efforts to build a geospatial KG, have mainly used sparse spatial relationships,
e.g., a district located inside a city, which provide only marginal benefits compared to a traditional database. In
spite of the substantial advances in the tasks of link prediction and knowledge graph completion, identifying
geospatial relationships remains challenging, particularly due to the fact that spatial entities are represented
with single-point geometries, and textual attributes are frequently missing. In this study, we present GTMiner,
a novel framework capable of jointly modeling Geospatial and Textual information to construct a knowledge
graph, by mining three useful spatial relationships from a geospatial database, in an end-to-end fashion. The
system is divided into three components: (1) a Candidate Selection module, to efficiently select a small number
of candidate pairs; (2) a Relation Prediction component to predict spatial relationships between the entities;
(3) a KG Refinement procedure, to improve both coverage and correctness of a geospatial knowledge graph.
We carry out experiments on four cities’ geospatial databases, from publicly-available sources and compare
with existing algorithms for link prediction and geospatial data integration. Finally, we conduct an ablation
study to motivate our design choices and an efficiency analysis to show that the time required by GTMiner
for training and inference is comparable, or even shorter, than existing solutions.
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1 INTRODUCTION
A Knowledge Graph (KG) is a ubiquitous format of knowledge base, consisting of nodes and directed
edges, which stand for the entities and their relations, respectively. The information contained in a
KG is usually represented as a set of triples (ℎ, 𝑟, 𝑡), called facts, where the entity h, the head, is
linked to the entity t, the tail, by the relation r. Knowledge graphs have already been successfully
applied to several tasks, such as question answering, information retrieval and recommendation
systems. In recent years, KGs have been increasingly enriched with geospatial information and
efforts have been made to build Geospatial Knowledge Graphs (GKGs) [11, 29]. Existing studies
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Name Lat Long Address Category

National Museum 1.29682 103.84877 93 Stamford Rd, 178897 Museums

Food for Thought 1.2963 103.84876 93 Stamford Road #01-04,

National Museum, 178897 Asian Fusion

Museum Carpark 1.296509 103.84794 Parking

Harry’s 1.2976 103.84905 90 Stamford Rd, 178903 Bars

Food for Thought 1.29675 103.8486 Restaurant

(a)

Serves

Part_of Part_of

Same_as

National Museum 
Category: Museums

Food for Thought 
Category: Asian Fusion

Food for Thought 
Category: Restaurant

Museum Carpark 
Category: Parking

Harry’s 
Category: Bars

Point of Interest
Area of Interest

(b)

Fig. 1. (a) Spatial entities contained in a geospatial database. (b) Spatial entities in a Geospatial Knowledge
Graph. The entity Food for Thought is located inside the National Museum. The entity Museum Carpark,
instead, is located outside the museum but is attached to it. Finally, two records in the database refer to the
same entity in the real world.

[20, 36] have applied GKGs to downstream tasks, such as location recommendation, with a discrete
success. Still, existing limitations are holding Geospatial Knowledge Graphs back from a wider
adoption. In fact, spatial entities, contained in geospatial databases, and used to build GKGs, are
described by the combination of textual attributes and geospatial information, which is typically
limited to a single point in the space. This representation has proven effective as witnessed by the
promising results achieved by many studies in different tasks [14, 23, 68, 74, 75]. Nonetheless, such
an approximation hinders the exploration of geospatial relationships.
Figure 1a shows a set of spatial entities contained in a database. In Figure 1b, the same entities,

contained in a KG, are linked by the three relationships studied in this paper: same_as, part_of, and
serves. The geospatial information, denoted by a latitude and a longitude, can be used to compute
an indicative distance between two spatial entities. However, in absence of complex geometries,
e.g., polygons, the aforementioned relationships are difficult to identify. Because of this, only sparse
spatial relationships have been studied in existing geospatial KGs, such as entities being inside cities
[29], closeness between places [36], and locations belonging to classes [11], thus providing little
advantage compared to a traditional database. Conversely, the KG depicted in Figure 1b, carries
considerable advantages: a user, for instance, can successfully query it to find a museum with a
restaurant inside, or with a car park attached. A search on the database, instead, would be limited to
spatial proximity between the entities. On the other hand, if a user performs a query for a restaurant,
the entity Food for Thought may not represent an acceptable result. In fact, being located inside a
museum, it may require the user to pay a ticket for the museum, in order to access the restaurant.
Similarly, the car park may not be accessible to people outside the museum. In the example in
Figure 1, it is clear that the entity National Museum, represents an Area of Interest (AOI), affecting
its neighboring entities and their functionalities. AOIs, at different granularity levels, have been
applied in density-based place clustering [62] and urban region embedding [24, 53]. Consequently,
a more articulate representation of the geospatial database is needed, in order to enhance existing
systems’ capabilities.
In this paper, we introduce the problem of automatic construction of a Geospatial Knowledge

Graph, by mining three interesting geospatial relationships from a database, casting it as a Knowl-
edge Graph Completion (KGC) problem. The challenges presented by this task are of different nature.
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First, the very limited availability of high-quality polygonal data makes it particularly daunting.
Collecting such data is, in fact, vastly expensive due to the requirement of human annotators or land
surveying. Furthermore, polygonal data is not a guarantee of success. In Figure 2, the polygonal
shape of Centerpoint Mall, a shopping center in Toronto, is highlighted in orange. The placeholders
indicate the position of Points of Interest from the Yelp database, on the map. All the POIs, in
reality, are located inside the shopping center. However, owing to the inaccuracy of the global
positioning system, only a subset of them actually falls inside the perimeter of the polygon. This
intrinsic limitation of the data requires a solution able to jointly model geospatial information and
textual attributes, in order to put the spatial distance in context with respect to the categories and
the addresses of the entities. Existing KGC approaches [1, 6, 65] are not designed to process spatial
information, and algorithms for geospatial data integration [4, 25] have been proposed to predict
only the equality relationship between spatial entities. A second challenge is presented by the
information contained in a geospatial database, which is often incomplete. Missing columns, and
attributes injected under different fields, make it a dirty-data problem. The required information to
accurately predict the desired geospatial relations, may be found in a combination of the database
fields, therefore the columns cannot be handled independently, and cross-interaction among them
is needed. A third challenge is posed by the sparsity of a geospatial KG, whose construction is
an open-world KGC problem, implying that most of the test entities are not seen during training,
consequently an entity’s representation should not rely on the known graph topology, but on
the entity’s textual and geospatial information. The most widely-adopted approaches for KGC
[6, 35, 56, 59, 64] are structural-encoding approaches: they assume a closed-world setting, producing
a meaningful representation for seen entities, in a densely connected graph, and therefore are not
suitable for our task. Lastly, records referring to the same real-world entity are common in the
geospatial field, especially when data comes from different sources: a system capable of performing
resolution of such entities is highly desirable to avoid duplication of results.
To address the aforementioned challenges, we present GTMiner, a system to handle the entire

KG construction in an end-to-end fashion. GTMiner first employs a candidate selection step to
reduce the number of candidate entities. Subsequently, a KGC algorithm is designed to predict
geospatial links between the entities. In order to address the first challenge, we design a Geospatial
Encoder to process an entity’s spatial information, and a novel Geo-Textual interaction component,
such that our KGC model can learn to attend different parts of the textual sequence, depending
on the distance between the entities. We adopt a transformer-based Language Model (LM) and
exploit the cross-attention mechanism to jointly compare all the entities’ textual attributes. Finally,
GTMiner has geospatial entity resolution capabilities and is able to recognise, and link, duplicate
entities. To further improve the accuracy of the system, we propose a refinement module to recall
additional links from previously predicted ones, and delete some that lead to logical inconsistency
to achieve higher precision. In summary, this paper makes the following contributions:

• We introduce the task of automatic geospatial Knowledge Graph construction, and propose
GTMiner, a system to handle the process in an end-to-end fashion, by mining three geospatial
relationships directly from a database.
• We present a novel geospatial Relation Prediction architecture, for open-world KGC, composed
of a pre-trained language model, a geospatial encoder and a novel Geo-Textual interaction, to
jointly model the textual and geospatial characters of an entity.
• We further propose a KG refinement module, specifically designed to improve both coverage and
correctness of a geospatial knowledge graph.
• We introduce four real-world datasets, collected from publicly available sources. We carry out
extensive experiments to evaluate the performance of each of our system’s components and
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Fig. 2. The polygonal shape of Centerpoint Mall, is highlighted in orange. The placeholders are POIs that are
located inside the mall. Given the inaccuracy of the global positioning system, only a subset of them actually
falls inside the perimeter of the polygon.

perform ablation studies to motivate our design choices. Finally, we share the source code of
GTMiner1, to make our system available for use and our results reproducible.

2 RELATEDWORK
2.1 Knowledge Graph Completion
Knowledge Graph Completion is the task of identifying new relationships between the entities in
a KG, to form new, plausible triples. KGC methods can be classified into three main approaches:
topology-based, textual encoding and hybrid.

2.1.1 Topology-based approach. Topology-based approaches include some of the pioneering stud-
ies in the field of KGC. They explore the structure of the graph through measurement in low-
dimensional space. TransE [6], a well-known study, is a translation-based approach in which the
head entity h is translated in the direction of the relation r, and the distance with the tail t is
measured. The L2-norm scoring function is given by −||(h + r) − t| |, where bold lower case letters
denote vectors. RotatE [54], instead, defines graph embeddings in complex vector space to deal
with symmetric relations. TransR [35] learns embeddings for entities and relations in two different
vector spaces and TransD [26] decomposes the projection matrix in the product of two vectors, as
an improvement over TransR. A different approach is to operate on the whole triple to compute its
plausibility score. A well-known effort in this direction is RESCAL [40], whose matching function
is 𝑓 (ℎ, 𝑟, 𝑡) = 𝑓𝑟 (ℎ, 𝑡) = h⊤W𝑟 t, where W𝑟 is a relation-specific projection matrix. To reduce the
number of parameters, DistMult [64] defines the relation matrix as a diagonal matrix, which in turn
makes the approach suitable only to model symmetric relations. ComplEx [56] modifies DistMult
to handle also anti-symmetric relations, using complex numbers. SimplE [30] proposes a simple
enhancement to tensor factorization to learn dependently the two embeddings that represent each
entity, when it is the head and when it is the tail of a triple. ConvE [9] reshapes the embeddings of
h, r and t to be 2-dimensional vectors and applies 2D convolutional layers to model the interactions

1https://github.com/PasqualeTurin/GTMiner
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between entities and relations. Finally, in [28] authors present T-GAP, to model temporal displace-
ment between events in the KG. All the topology-based approaches, learn meaningful embeddings
for entities and relations from existing links and from the structure of the known graph. As a
consequence, these methods are suitable only for closed-world KGC problems, due to the fact that
they cannot produce meaningful embeddings for entities (relations) that are not part of the training
set, or entities that are not well-connected in the graph. A geospatial KG is a sparse graph, whose
construction is an open-world KGC problem that involves predicting relations for unseen entities.

2.1.2 Textual encoding approach. Text representation learning is a fundamental problem in natural
language processing, which aims at producing a contextualised representation from a sequence of
text. Several studies adopted textual encoding for KGC. In particular, they use textual descriptions
associated to entities and relations to learn meaningful embeddings, which are subsequently used to
predict new links in the graph. Socher et al. [51] use Continuous Bag of Words (CBoW) to represent
each component of the triple and a neural tensor network for relation classification. ConMask
[50] uses GloVe [43] pre-trained word embeddings to produce a representation for each token
in both entities’ name and description and for relation’s name. It uses attention mechanism to
selectively mask entities’ description information that is not relevant for the given relation. A CNN
is then adopted to produce the latent feature vector that is finally used for classification. Conversely,
KG-BERT [65] makes use of a transformer-based pre-trained language model to directly produce
a contextual representation of the entire triple, exploiting the cross-attention system embedded
in the transformer layers to select pertinent information. Two different versions of the model are
presented in the study, namely a and b: the first one receives as input the text of the entire triple
(ℎ, 𝑟, 𝑡) and predicts its plausibility score as a whole; the second receives only the text of the entities
and predicts which of the |R | relations is the most suitable. PKGC [38] builds on KG-BERT(a)
and proposes to use a natural language description of the relation, to help the model understand
its meaning in the triple. Given their ability to produce a contextualized representation using an
entity’s textual attributes alone, all the methods based on textual encoding represent an attractive
solution for open-world KGC problems.

2.1.3 Hybrid approach. Algorithms to learn knowledge graph embeddings by jointly modeling
entities’ textual description and graph structure, have been increasingly developed. To allow
deep interactions among the two sources of information, Toutanova et al. [55] train continuous
representations of structural knowledge and textual relations in a joint fashion and show an
improvement over the two individual approaches. Specifically, they build on the DistMult topology-
based approach, and add a one-hidden-layer convolutional neural network for textual encoding.
The scoring function 𝑓 (ℎ, 𝑟, 𝑡) outputs the model’s confidence in the existence of the triple. An
open-world extension of traditional structural learning methods, is presented in [47], where GloVe
word embeddings are added to existing structural solutions, to improve their performance. Recently,
StAR [58] proposed to use BERT [10] pre-trained language model and a joint training objective
to learn textual and structural representations. In particular, they use a siamese-style BERT to
produce a unified encoding for the head entity and the relation 𝑓𝐵𝐸𝑅𝑇 (ℎ, 𝑟 ) and one for the tail
entity 𝑓𝐵𝐸𝑅𝑇 (𝑡) and employ a classification objective to maximize positive triples’ plausibility and a
contrastive objective to minimize the structural distance of the encodings of positive triples. To
generate negative samples, positive triples are corrupted, randomly sampling a wrong head or a
wrong tail.
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2.2 Geospatial Knowledge Graphs
Knowledge Graphs have long enjoyed great popularity in both industry and academia, and famous
examples like DBpedia [2], YAGO [52] and Microsoft’s Satori2 have reached a tremendous scale.
YAGO is one of the first research projects to construct a knowledge graph automatically, by
harvesting entities’ information from Wikipedia and combining it with the ontological backbone
available in WordNet [39]. The ever-increasing availability of geospatial data, already widely
used in applications like recommendation, human mobility and logistics, to name a few, has
motivated researchers to adopt KGs in the geospatial field. Radon [49] is a recent effort to explore
topological relations, such as equality, intersection and enclosure. It introduces a novel indexing
method coupled with a space tiling technique to effectively compute similarity and overlapping of
entities’ geometries. In contrast, JedAI-spatial [41] after estimating the intersection matrix for a
pair of geometries, simultaneously computes all positive topological relations, achieving higher
efficiency. Both these approaches operate on polygonal data and assume exact geometries of all the
involved spatial entities, i.e. AOIs and POIs, to be known. This assumption substantially reduces the
appeal of both algorithms, given the scarcity of high-quality polygonal data, in publicly-available
geospatial databases. Geo-ER [4] is a recent approach for geospatial data integration, based on
both textual and geospatial encoding. It further proposes a neighbourhood embedding technique
to represent information from nearby entities. WorldKG [11] is a comprehensive geographic KG,
built from the OpenStreetMap (OSM) dataset. It converts the flat OSM schema of categories into a
hierarchical ontology structure, linking spatial objects’ categories to the corresponding classes in
Wikidata and DBpedia ontologies. YAGO2geo [29] is a new version of YAGO2, with more precise
geospatial information. The original KG is enriched by substituting 1-dimensional points of some
spatial entities, with line and polygon information from official sources such as administrative
divisions. The authors show its effectiveness in answering queries for which precise geospatial
information is required. Liu at al. [36] build an Urban Knowledge Graph of Points of Interest. The
POIs are linked to categories and brands they belong to, and to districts they are located at, thus
creating a graph that reflects semantic similarity and spatial closeness among them, leading to an
improvement in location recommendation on some datasets. Hu et al. [20] construct a KG where
users are head entities and POIs are tail entities. The relations describe the visits of users to POIs,
and embed time information of the visit. Both [20, 36] make use of POI attributes and user-POI
interactions, already available in a structured database, e.g., category and neighborhood attributes,
to represent semantic and sparse geospatial relationships. In absence of precise geometries, existing
algorithms cannot identify geospatial relationships that require joint spatial and textual reasoning,
like the ones studied in this paper; except for Geo-ER, which was specifically designed to accurately
identify same_as relationships.

2.3 Pre-trained Language Models
Language Models based on the Transformer [57] architecture have established a new state-of-the-
art in a variety of NLP tasks [21, 72]. BERT [10], RoBERTa [37] and DistilBERT [46], a smaller and
faster version of BERT, are some of the most prominent examples. The success of this architecture
is largely due to the self-attention mechanism. The word embeddings generated by Transformers
are deeply-contextualized and capture the different meanings that a word can assume in different
contexts. Another advantage is given by the availability of large models, pre-trained on massive
text corpora and ready to be fine-tuned on specific tasks.

2http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing
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Fig. 3. An overview of the GTMiner framework. It is composed of three main components: (1) the Candidate
Selection step (Sec. 4.2), to efficiently select entities likely to share a relation; (2) the Relation Prediction
step (Sec. 4.3), to predict geospatial relationships between the entities; and (3) a geospatial KG Refinement
algorithm (Sec. 4.4).

3 PROBLEM FORMULATION
A Geospatial Knowledge Graph G = {E,R,T } consists of a set of spatial entities with point
geometry E, a set of geospatial relationships R, and a set of triples T = {(ℎ, 𝑟, 𝑡)}, where h, t
∈ E, are linked by r ∈ R. A spatial entity 𝑒 ∈ E is described by a set of 𝑚 textual attributes
{(𝑎𝑡𝑡𝑟𝑖 : 𝑣𝑎𝑙𝑢𝑒𝑖 )}1≤𝑖≤𝑚 , and a location 𝑙𝑒 = (𝜙𝑒 , 𝜆𝑒 ), where 𝜙𝑒 and 𝜆𝑒 denote the latitude and the
longitude of 𝑒 , respectively. The problem of automatic construction of a geospatial KG, studied in
this paper, is stated as follows: given an input geospatial database, as a collection of spatial entities
E, and a set of geospatial relationships R, we aim at mining a set of triples T ⊆ E × R × E, in
order to construct a KG. In this paper, R = {same_as, part_of, serves}. The system outputs a set of
predicted triples T ′, which is compared to the ground truth triples set T ∗, and F1-score is used
to evaluate its success. Since the overall system’s performance depends on the performance of its
sub-components, we evaluate each of them separately. The system is generalizable with respect to
the set of geospatial relationships R to be mined, which can be extended, by including additional
relationships. We choose only relations that present a clear challenge to be identified, compared
to, for instance, close_to_public_transport, that can be inferred using a distance filter. At the same
time, we do not consider other geospatial relations, such as beside, between, etc., as they cannot be
identified in absence of exact geometries. Finally, the input data may derive from a single source or
be merged into one.

4 GTMINER
4.1 System Overview
An overview of the framework is presented in Figure 3. GTMiner receives as input a geospatial
database and outputs a geospatial KG, as a set of triples. Several challenges arise in the KG con-
struction process. First, a combinatorial explosion is caused by a model that is required to score
every possible triple (ℎ, 𝑟, 𝑡), to identify if a relation 𝑟 exists between any two entities ℎ and 𝑡 . To
alleviate this problem, we design a Candidate Selection step (Sec. 4.2), to efficiently select a subset
of entity pairs, likely to share a geospatial relationship. Subsequently, a KGC algorithm (Sec. 4.3)
predicts a relationship for each entity pair. Given the dirty-data setting of our problem, we decide
to adopt pre-trained LMs for the textual encoding part (Sec. 4.3.1), in order to fully exploit the
attention-based selectivity of the transformer architecture. Moreover, considering the ability of
such models to deal with text-heavy data, comparing attributes individually becomes unnecessary.
This, makes the framework schema-agnostic, which implies that the correct functioning of the
system does not require entries to adhere to the same schema. To process geospatial information,
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we purposely design a Geospatial Encoder (Sec. 4.3.2). In fact, as a result of the inaccuracy of the
global positioning system, threshold-based distance rules would not be effective to determine if a
geospatial relationship is plausible between two entities. We further add a Geo-Textual interaction
component (Sec. 4.3.3), to let the model contextualize the distance with the textual attributes of the
entities. Finally, in section 4.4, we describe our geospatial KG refinement algorithms.

4.2 Candidate Selection
A well-known problem in the task of Knowledge Graph Completion, is the combinatorial explosion
caused by a trained model, which, given an incomplete triple of the form (ℎ, 𝑟, ?), is asked to
score all the candidate triples {(ℎ, 𝑟, 𝑡 ′) |𝑡 ′ ∈ E}, and rank the correct one, (ℎ, 𝑟, 𝑡∗), as high as
possible. This is further exacerbated in textual encoding approaches, due to the increasing adoption
of transformer-based language models, whose computational cost grows quadratically with the
sequence length. A recent approach [58] proposes to use a siamese-style encoder, keeping the head
and the relation together, and isolating the tail, trading off contextualization capabilities of the
model, to achieve a higher efficiency. Our experimental results show that separating the head and
the tail entities, leads to a significant reduction of performance, because in a dirty-data setting, with
several missing fields, the model necessitates to attend different attributes also depending on the
ones available in the other entity. Therefore, the correct employment of the attention mechanism
among cross-entity attributes is vital to the effectiveness of the model.

The candidate selection step is designed to mitigate the problem of combinatorial explosion, by
efficiently selecting a small subset of candidates, to be subsequently processed by a finer-grained
model. It is divided into two main components. The first one is to search for Areas of Interest
and the second one to select candidate entities that are in spatial proximity. The concept of AOI
has long been studied in geospatial information systems [7, 13, 16, 17] and is commonly defined
as an area or a region, typically within an urban environment, which attracts people’s attention
[22, 33]. The geographic entities that are located inside the perimeter of AOIs are often referred as
Points of Interest. Moreover, given the large number of people visiting those areas, neighboring
entities often serve a purpose related to the AOI, and have been studied in the context of human
mobility patterns [5, 67]. To avoid a loss of generality, we define an area of interest as a spatial
entity containing at least another entity inside its perimeter. In a geospatial database, AOIs, such as
shopping centers or universities, are represented as generic spatial entities, indistinguishable from
POIs, therefore we first train a classifier to identify them.
Formally, given a collection of spatial entities {𝑒 |𝑒 ∈ E}, each characterized by 𝑚 attribute-

value pairs {(𝑎𝑡𝑡𝑟𝑖 : 𝑣𝑎𝑙𝑢𝑒𝑖 )}1≤𝑖≤𝑚 , we train a Feature Extractor F (𝑒) ∈ R𝑑 , which converts the
spatial entity in a 𝑑𝑓 -dimensional feature vector representation. The extracted feature vector, is
subsequently fed into a binary classifier C to output the final prediction. The Area of Interest Search
module takes as input a spatial entity 𝑒 and outputs 𝑦 ∈ [0, 1], which is the probability of the entity
𝑒 being an AOI,

𝑦 = C(F (𝑒)) . (1)

As shown in Table 2, there is a strong imbalance between the two classes, i.e., |E | ≫ |E𝐴 |, which
would hamper the classifier accuracy, if trained on the entire set. Because of this, we build a dataset
(D,Y), by randomly sampling (without replacement) 𝑘 negative examples for each positive one.
We vary the value of 𝑘 among {1, 3, 5, 7, 10}, to search the one that yields the best results on the
validation set. Given a training set of entities associated with their ground truth label, parameters
of both F and C can be optimized by applying stochastic gradient descent, and thus trained to
detect AOIs, as follows

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 93. Publication date: May 2023.
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Algorithm 1 Spatial Filtering
Input: E: spatial entities set, E𝐴: AOIs set from AOI Search module, 𝑓𝑑𝑖𝑠𝑡 : distance function, 𝑑𝑡ℎ :

distance threshold, 𝑓𝑠𝑖𝑚 : string similarity function, 𝑠𝑖𝑚𝑡ℎ : similarity threshold
Output: C𝑝 : candidate pair set
1: E ← {E} − {E𝐴}
2: for each AOI 𝑒𝑘𝑎 in E𝐴 do
3: Initialize empty candidate set for 𝑒𝑘𝑎 : C𝑒𝑘𝑎
4: Initialize empty candidate pairs set for 𝑒𝑘𝑎 : C𝑝𝑘𝑎
5: for each entity 𝑒𝑖 in E do
6: Compute distance 𝑓𝑑𝑖𝑠𝑡 (𝑒𝑘𝑎 , 𝑒𝑖 )
7: if distance ≤ 𝑑𝑡ℎ then
8: C𝑒𝑘𝑎 ← C𝑒𝑘𝑎 + 𝑒

𝑖

9: C𝑝𝑘𝑎 ← C𝑝𝑘𝑎 + (𝑒
𝑖 , 𝑒𝑘𝑎 )

10: for each entity 𝑒 𝑗 in C𝑒𝑘𝑎 do
11: Compute similarity 𝑓𝑠𝑖𝑚 (𝑒𝑖 , 𝑒 𝑗 )
12: if similarity ≥ 𝑠𝑖𝑚𝑡ℎ then
13: C𝑝𝑘𝑎 ← C𝑝𝑘𝑎 + (𝑒

𝑖 , 𝑒 𝑗 )
14: C𝑝 ← C𝑝 + C𝑝𝑘𝑎
15: return C𝑝

F ∗, C∗ = argmin
F,C

L𝑠 . (2)

L𝑠 is the loss function to be minimized during the training of the AOI search module. We adopt a
weighted binary cross-entropy loss,

L𝑠 = −
1
𝑁

𝑁∑︁
𝑖

𝛼 𝑦𝑖 𝑙𝑜𝑔(𝑦𝑖 ) + 𝛽 (1 − 𝑦𝑖 ) 𝑙𝑜𝑔(1 − 𝑦𝑖 ), (3)

where 𝛼 and 𝛽 are the weights of the positive and the negative classes, respectively. In particular,
we choose 𝛼 > 𝛽 , in order to increase the penalization of the algorithm in case of false negatives.
In fact, while false positives would only cause an increase of the number of candidates to be
handled by the finer-grained model, false negatives would result in entities linked by geospatial
relations, not being included in the candidate set, thus hurting the performance. We choose name
and category as the entity attributes used for classification. For the Feature Extractor F we employ:
(1) Recurrent neural networks, specifically Bidirectional Long-Short Term Memory (BiLSTM) [19]
units, a solution widely-adopted [48, 66] in NLP to encode variable-length text into features, capable
of retaining the words order in the sequence embedding; (2) BERT [10] pre-trained language model.
We adopt GloVe [43] pre-trained word embeddings to transform words into vectors, before feeding
them to the BiLSTM network. We use a multi-layer perceptron (MLP), as the binary classifier C.
The second component of the candidate selection module aims at retrieving spatial entities in

close proximity of Areas of Interest. In fact, geospatial relationships are predominantly observed
between entities at a close spatial distance, therefore the efficiency of the system can be highly
increased by selecting only neighboring entities as potential candidates. The Spatial Filtering
algorithm is illustrated in Algorithm 1. It receives as input the list of entities E𝐴 classified as AOIs
by the previous component, and the complete set of spatial entities E. A distance function (e.g.,
Haversine, Euclidean...) and a similarity function (e.g., Levenshtein, Jaccard...) are specified, along
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Table 1. The geospatial relationships covered in this study, each associated with a short description.

Name Description

part_of (𝑎, part_of, 𝑏)→ 𝑎 is located inside the perimeter of 𝑏

same_as (𝑎, same_as, 𝑏)→ 𝑎 and 𝑏 are two spatial records that refer to the same spatial entity
in the real world

serves (𝑎, serves, 𝑏)→ 𝑎 is a spatial entity that provides a service to the entity 𝑏, in terms of
human mobility (e.g., a taxi stand, a parking lot...), assistance (e.g., an information
desk) etc.

unknown (𝑎, unknown, 𝑏)→ a special relation indicating that none of the above relationships
links 𝑎 and 𝑏.

with two thresholds, 𝑑𝑡ℎ and 𝑠𝑖𝑚𝑡ℎ . The component outputs a set of candidate pairs C𝑝 . For each
AOI 𝑒𝑘𝑎 in the list, each neighboring entity 𝑒𝑖 , whose distance is lower than the given threshold 𝑑𝑡ℎ ,
is selected (lines 2-9), and added to 𝑒𝑘𝑎 ’s candidate set C𝑒𝑘𝑎 (line 8), and the candidate pair (𝑒𝑖 , 𝑒𝑘𝑎 ) is
added to the candidate pair set C𝑝𝑘𝑎 (line 9). Furthermore, entities in the same candidate set C𝑒𝑘𝑎 are
compared using the similarity function 𝑓𝑠𝑖𝑚 (lines 10-12), applied on the Name attribute. Spatial
entities with a name similarity higher than the given threshold 𝑠𝑖𝑚𝑡ℎ , are selected as potential
duplicates, and added as candidates in𝐶𝑒𝑘𝑎

(line 13). Finally, the set of candidate pairs C𝑒𝑘𝑎 , associated
with the Area of Interest 𝑒𝑘𝑎 , is appended to the full list of candidate pairs 𝐶𝑝 (line 18), which is
returned as output (line 20).

4.3 Relation Prediction
The Relation Prediction module aims at discovering geospatial relationships between the entities,
so as to construct a Knowledge Graph. This, presents a task-specific challenge. In fact, 1-to-𝑛
and 𝑛-to-1 relationships exist among the entities. A spatial entity, for instance, may be linked by
same_as relation to two or more entities. On the other hand, many entities may be linked by part_of
relation to a single entity. In order to address this challenge, we follow [65] to cast the problem as a
relation prediction one: the module receives a small set of candidate entity pairs that are in spatial
proximity, retrieved during the candidate selection step, and predicts if a relation exists between
two entities, and which one.

Formally, given a set of geospatial relationships R, and a set of candidate entity pairs, in the form
of incomplete triples (ℎ, ?, 𝑡), the goal of the relation prediction module is to score all candidate
triples {(ℎ, 𝑟 ′, 𝑡) |𝑟 ′ ∈ R} and to rank the oracle triple (ℎ, 𝑟 ∗, 𝑡) as high as possible. We include an
additional relationship, called unknown, in the set R, in order to enable the model to predict that
two candidate entities, retrieved during step 1, do not share any of the defined spatial relationships.
An example is the entity Harry’s, in Figure 1b, that is in the neighbourhood of the AOI National
Museum, but does not share any of the three relationships with it. All the relations considered in
this study, along with a short description, are listed in Table 1.

To predict the relationships between the entities, we design a novel architecture, which is depicted
in Figure 4. Three main components are used to perform feature extraction from the spatial entities:
(1) a textual encoder, (2) a geospatial encoder, (3) a geo-textual interaction mechanism. Finally, an
MLP is used as a multi-class classifier, to project the feature vector to an |R |-dimensional space, for
relation prediction.
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Fig. 4. General architecture of the GTMiner Relation Prediction module. It is composed of a textual encoder
(Sec. 4.3.1), a geospatial encoder (Sec. 4.3.2), and a Geo-Textual interaction component (Sec. 4.3.3).

4.3.1 Textual encoder. The textual encoder is the component that processes the textual attributes
of the entities. We choose a pre-trained language model as the backbone of this component, given
the success of LMs in dealing with text-heavy sequences [65] and in dirty-data settings [4, 34].
Each entity is first serialized as follows:

S𝑒 (𝑒) = [COL] 𝑎𝑡𝑡𝑟1 [VAL] 𝑣𝑎𝑙𝑢𝑒1 ... [COL] 𝑎𝑡𝑡𝑟𝑚 [VAL] 𝑣𝑎𝑙𝑢𝑒𝑚 ,

where [COL] and [VAL] are the special tokens followed by the column name and the column value,
respectively. The two entities’ serialized versions are joined by a second serialization step, that
operates on the entity pair:

S𝑝 (𝑒ℎ, 𝑒𝑡 ) = [CLS] S𝑒 (𝑒ℎ) [SEP] S𝑒 (𝑒𝑡 )) [SEP],

where [CLS] and [SEP] are two special tokens used to classify a textual sequence and to separate
entities in the sequence, respectively. The serialized pair is subsequently fed into a pre-trained LM,
specifically BERT [10] language model. BERT outputs a tokens’ sequence of the same length of input,
which is the contextualized representation of the input tokens, obtained with the transformers’
cross-attention mechanism applied at token-, attribute- and entity-level. Each token is represented
as a 𝑑ℎ𝑖𝑑 -dimensional vector. A common approach in classification problems [34, 58, 65], is to
employ a pooling layer, after the LM, that extracts only the first token, corresponding to the [CLS]
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token, and use it as a representation of the entire sequence for classification. Although successful,
this strategy prevents further interaction between the tokens and external signals. Because of this,
we pass the full sequence of tokens to the geo-textual interaction component.

4.3.2 Geospatial encoder. Geospatial information has been successfully integrated in learning-
based frameworks by recent studies using different techniques. Zhao et al. [73] divide the map
in a fixed-size grid, and learn an embedding for each tile. The distance between two places is
then computed as the difference, in the embedding space, between the tiles where the two places
are located. POI-Transformers [70] is a recent effort to perform entity matching between Points
of Interest’s databases. The position of each entity is represented using GeoHash3 algorithm.
It encodes an input position 𝑙 = (𝜙, 𝜆) into a fixed-length string. The authors concatenate the
GeoHash-generated string to other textual attributes of the POI, and use it as input to a transformer-
based language model, to perform deduplication. In contrast, Geo-ER [4] computes the distance
between spatial entities using Haversine formula, and embeds it into a 𝑑-dimensional array, to be
concatenated to the output of a language model, achieving higher performance on the same task.
We find empirically that embedding directly the distance information leads to better performance,
compared to using absolute position. Therefore, we follow Geo-ER, and compute the distance
between the head and tail entities, using a distance function 𝑓𝑑𝑖𝑠𝑡 (e.g., Haversine, Euclidean...).
Then, we normalize its value in the interval [0, 1], and embed it in a 𝑑𝑔-dimensional array. In
summary, the output ℎ𝑔 of the geospatial encoder module is

𝒉𝑔 = 𝝎𝑔

𝑓𝑑𝑖𝑠𝑡 (𝑒ℎ, 𝑒𝑡 )
𝑑𝑡ℎ

+ 𝛽𝑔, (4)

where 𝑑𝑡ℎ is the distance threshold specified in Algorithm 1, representing the maximum distance
between candidate entities. 𝝎𝑔 and 𝛽𝑔 are a vector of learnable parameters and a learnable bias,
respectively.

4.3.3 Geo-Textual representation. A widely-adopted approach to train a model on multi-modal
data, is to embed each input type in a different high-dimensional space, and subsequently concate-
nate them [4, 60, 61, 63]. In recent years, cross-modal interaction has emerged as a sophisticated
technique that allows multi-modal inputs to jointly share information, leading to significant im-
provements in fields like NLP [8] and Computer Vision [15, 71]. We design a Geo-Textual interaction
component, in order to extend the concept of cross-modal interaction to geospatial data. This allows
to contextualize the spatial information with knowledge available in textual form, to correctly
predict which relation links two spatial entities. For instance, if a model is to predict if an entity 𝑎
is located inside an entity 𝑏, in absence of cross-modal interaction, the knowledge extracted from
the textual attributes would be mostly limited to the address information; the category attribute of
the entities would not play a central role in the prediction, while geospatial information would
be used to learn a distance threshold. Nonetheless, putting the distance into context with the
category of the container entity 𝑏 (e.g., a shopping mall or an airport), is pivotal to predict if
such geospatial relationship exists between the entities. The simple concatenation of textual and
geospatial embeddings hinders a similar interaction, thus limiting the performance of the system.
The Geo-Textual interaction component is based on the additive attention mechanism [3], to let the
model learn to attend different positions in the textual sequence, by jointly attending geospatial
and textual information. Formally, given a sequence of 𝑁 token embeddings 𝑻 = {𝒕1, 𝒕2, ..., 𝒕𝑁 },
output of the textual encoder module, and a distance embedding 𝒉𝑔, an un-normalized attention
score is first computed as:

3https://en.wikipedia.org/wiki/Geohash
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Fig. 5. Examples of a missing triple that can be added by our Extension algorithm (a); and a set of two triples
causing logical inconsistency, solved by our Repair algorithm (b).

𝛼𝑖 = 𝜎 (𝝎⊤𝑎 (W⊤
𝑡 𝒕𝑖 | |W⊤

𝑔 𝒉𝑔)), (5)

in which, W𝑡 ∈ R𝑑ℎ𝑖𝑑×𝑑ℎ𝑖𝑑
′
and W𝑔 ∈ R𝑑𝑔×𝑑𝑔

′
are learnable weight matrices, that project the

token embedding and the distance embedding, onto the attention space. | | denotes concatenation.
The attention is parametrized by a learnable weight vector 𝝎𝑎 ∈ R𝑑ℎ𝑖𝑑

′+𝑑𝑔 ′ , and 𝜎 is an activation
function. The softmax function is applied to the un-normalized attention scores, over the entire
textual sequence length,

𝛼𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝛼)𝑖 =
𝑒𝛼𝑖∑𝑁
𝑗=1 𝛼 𝑗

. (6)

The output vector h𝑔𝑡 ∈ R𝑑ℎ𝑖𝑑 of the Geo-Textual interaction module is computed as a weighted
sum of the token embeddings, multiplied by their attention scores:

𝒉𝑔𝑡 =
𝑁∑︁
𝑖=1

𝛼𝑖 𝒕𝑖 (7)

Finally, 𝒉𝑔𝑡 is concatenated to the distance embedding, and a multi layer perceptron is applied to
predict the relation that links the two entities.

4.4 Refinement Module
A knowledge graph is unlikely to be fully correct, and a trade-off between coverage and correctness
is addressed differently in each KG [69]. To solve this problem, several methods for KG refinement
have been proposed [12, 42, 45]. In this study, we present a refinement module, composed of two
steps, to improve both coverage and correctness of a geospatial knowledge graph. Note that in both
steps, we only use test relations, that have been predicted during the Relation Prediction phase.

4.4.1 Extend. Knowledge extension, or completion, algorithms [18, 31, 32] aim at increasing the
coverage of a knowledge graph. Our extension refinement predicts missing relations between
entities, and adds relations that could not have been predicted during the Relation Prediction step.
Figure 5a illustrates an example of a triple that is added by the Extend algorithm. The entity 𝑒1’s
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Table 2. Statistics of the data

Triples Relations

City |E | |E𝐴 | Train Valid Test part_of same_as serves Category Address

Singapore 17092 370 13076 5229 7852 8526 1547 2656 99.79% 67.21%
Toronto 18911 179 8488 3390 5101 5744 1262 1188 99.92% 62.87%
Seattle 10504 500 7906 3162 4747 4257 1138 1215 99.85% 68.06%

Melbourne 13473 190 3058 1220 1839 2675 610 432 99.94% 62.45%

Table 3. AOI Search dataset statistics.

Entities Singapore Toronto Seattle Melbourne

|E𝑝𝑜𝑠 | 370 179 500 190
|E𝑛𝑒𝑔 | 1850 895 2500 950

Table 4. Results of the Area of Interest search task.

Singapore Toronto

Model P R F1 P R F1

BiLSTM 89.8 91.16 90.47 82.47 71.55 76.62
BERT 97.56 99.64 98.59 96.15 100.0 98.04

Seattle Melbourne

Model P R F1 P R F1

BiLSTM 91.68 85.93 88.71 84.81 87.2 85.98
BERT 95.1 95.25 95.17 90.77 96.41 93.5

address information is missing and the triple (𝑒1, part_of , 𝑎1) could not be predicted using entities’
positions alone. Nonetheless, 𝑒2 is predicted to be a duplicate of entity 𝑒1, and has a complete
address information, including the name of the area of interest 𝑎1 in the address, suggesting that
the entity is located inside the stadium. The Extend algorithm uses the triples (𝑒1, same_as, 𝑒2) and
(𝑒2, part_of , 𝑎1), to automatically add (𝑒1, part_of , 𝑎1). As a result of the added triples, a successful
extension refinement is expected to benefit a KGC system in terms of recall.

4.4.2 Repair. KG Repair, or correction, algorithms identify information in the graph that cause
logical inconsistency [18, 27]. Examples of information causing logical inconsistency, in a geospatial
knowledge graph, are an AOI deemed to be same_as a spatial entity, or a spatial entity deemed to
be located inside two non-overlapping areas of interest. The latter example is depicted in Figure 5b.
When two AOIs are in spatial proximity, an entity could be included in both their spatial candidate
sets. The entities 𝑎1 and 𝑎2, in Figure 5b, are located in the same road, and share a significant portion
of the address information. As a consequence, the entity 𝑒1 is predicted to be part_of both 𝑎1 and
𝑎2. The relation prediction module outputs the most likely relation, associated with its probability,
and assigns different probabilities to the two triples, due to different distance between the entities.
During the Repair step, the triples are analyzed in pairs, in order to find inconsistencies, and, when
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found, only the triple with highest probability is kept. In the example in Figure 5b, the Repair
algorithm deletes the triple (𝑒1,part_of , 𝑎1), thus improving the precision of the system.

5 EXPERIMENTS
We evaluate the effectiveness of each component of the proposed framework, in the phases of
candidate search, geospatial knowledge graph construction and KG refinement. To do so, we use
real-world geospatial databases from four cities, and compare our model to the best performing
algorithms in the fields of open-world KGC and geospatial data integration.

5.1 Datasets
Four real-world datasets are created by collecting 59,080 spatial entities from OpenStreetMap4
and Yelp5, using the respective APIs. For both the sources, we collect all the available attributes,
specifically Name, Address, Latitude, Longitude and Categories. The attribute Zip Code, when avail-
able, is concatenated to the address. For entities belonging to multiple categories, all the categories
are included, separated by semicolon. In OSM, each category is represented as a key-value pair.
For instance, a bus stop has an attribute highway with value bus_stop. We select only the value
(bus_stop), as the category of the entity. The statistics of the datasets are presented in Table 2. Under
the Category column, we report the percentage of entities with at least one category available.
Under the Address column, instead, we report the percentage of entities with non-null address
information. The remaining attributes (Name and positional information) are always available. We
hired human annotators, to identify and annotate geospatial relationships between the entities,
thus forming four sets of triples, one for each city. The first step in the annotation process is
the identification of candidate Areas of Interest, using the name, category and shape on the map.
Subsequently a spatial filter is used to automatically suggest, to the annotator, entities in proximity
of the candidate AOI, from both data sources. Annotators’ decisions for all the relationships are
based on updated GIS maps and search engines. An entity is annotated to serve an AOI if it is
physically adjacent to it, and has a clear reference to the AOI in the name or address information.
For instance, the bus stop named NUH, located outside the AOI National University Hospital, is
deemed to serve it. Another example is that of the shopping center’s parking lots in Figure 2.

5.2 Candidate Selection
In this section we evaluate the performance of the area of interest search module. As discussed in
Section 4.2, we implement two design choices for the feature extractor F : a BiLSTM-based recurrent
neural network and a pre-trained language model. The classifier C is a multi layer perceptron.
For the BiLSTM model, we use 100-dimensional pre-trained GloVe embeddings, we set hidden
layer dimension at 64 for each direction, and a dropout rate of 0.1. The max sequence length is set
to 16, and out-of-vocabulary words are represented using the average of all GloVe embeddings.
For the language model, we use BERT pre-trained LM and set a dropout rate of 0.1. Due to the
BERT word-splitting scheme6, which splits out-of-vocabulary words into sub-words, leading to an
increase of the number of tokens, we set a higher max sequence length of 32. We use the output
[CLS] token as the feature vector fed to the classifier. We use a learning rate of 3e-5 and a batch
size of 32, for both models. We empirically set the distance threshold 𝑑𝑡ℎ = 1500𝑚 (Haversine) and
the similarity threshold 𝑠𝑖𝑚𝑡ℎ = 0.6 (edit distance) using the training set. Both the thresholds are
set to maximise the recall, i.e., avoid filtering out pairs of entities linked by a relationship. Finally,

4https://www.openstreetmap.org/
5https://www.yelp.com/developers
6https://github.com/alvations/sacremoses
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we choose the best values of hyper-parameters 𝛼 , 𝛽 and 𝑘 , the number of negative samples for each
positive one, using the validation set. The statistics of the classification dataset, created with 𝑘 = 5,
are displayed in Table 3.

Table 4 shows that BERT model achieves higher performance than the BiLSTM on all the datasets.
We measure the results in terms of F1 score, where the positive class is represented by AOIs. On
two datasets, BERT achieves a perfect recall of 100.0, while keeping a high precision. As discussed
in Section 4.2, a high recall is desirable to retrieve as many of the true AOIs as possible, while a
high precision reduces the size of the candidate set, increasing the efficiency of the system.

5.3 KGC Baselines
We compare GTMiner’s Relation Prediction module to algorithms for knowledge graph completion
and geospatial data integration: we select textual-encoding algorithms (ConMask [50], KG-BERT(a,
b) [65], PKGC [38]) to show the effect of different techniques to represent the entities’ and relations’
textual attributes; structural-encoding (TransE [6], SimplE [30]) and hybrid (ComplEx-OWE [47],
StAR [58]) approaches are included among the baselines to support our choice of neglecting
structural information to solve an open-world problem. Finally we select geospatial-aware (KG-
BERT (+GH), Geo-ER [4]) methods, to analyze the importance of relative distance, compared to
absolute position, and to highlight the effect of our multi-modal interaction. We do not include an
algorithm based on distance information alone since, in our preliminary results, we found that the
inaccuracy of locations (shown in Figure 2), makes such a model unacceptably weak. We provide a
detailed description of our baselines:

• TransE [6] is a translation-based approach in which the head entity h is translated in the direction
of the relation r, and the distance with the tail t is measured. We modify its training strategy, by
corrupting the relation instead of the tail entity. During evaluation, we let it score all the possible
triples, by changing the relation instead of the tail entity, and take the most plausible one as the
final prediction.
• SimplE [30] is a more recent structural-encoding approach, that jointly learns the embeddings
that an entity assumes when it is the head or the tail of a triple. We change its training/evaluation
strategies, as in TransE.
• ConMask [50] is the best performing textual-encoding approach that do not rely on pre-trained
language models. It develops a relationship-dependent content masking to learn to attend only
the textual parts relevant for the given relation.
• ComplEx-OWE [47] is a hybrid approach, as it combines GloVe word embeddings for textual
encoding with a simple averaging function for aggregation, along with ComplEx algorithm for
structural representation.
• KG-BERT (a) [65] is the first version of KG-BERT, in which both the entities and the relation
are included in the textual sequence, and the pre-trained language model is used as a binary
classifier to predict if the triple is correct. During the training phase, it requires negative samples,
which are generated through relation corruption, i.e. generating negative triples by replacing
relation 𝑟 with a random relation 𝑟 ′.
• KG-BERT (b) [65], instead, includes only the head and tail information in the textual sequence,
and uses BERT model as a multi-class classifier to predict the relation that links two entities.
• PKGC [38] is a recent textual-encoding approach that builds on KG-BERT. It proposes to use a
soft prompt, which describes the relation in natural language form, and a support prompt, which
includes the additional attributes of the entity, to better contextualize the triple.
• StAR [58] is a hybrid framework. The authors propose a siamese-style encoder, based on BERT,
by keeping the head and the relation together, and isolating the tail. The structural representation

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 93. Publication date: May 2023.



Mining Geospatial Relationships from Text 93:17

Table 5. Results of KGC on geospatial data. Bold denotes the best performance in terms of F1 score. We show
the F1 improvements of GTMiner over the best baseline, and the improvement achieved by our refinement
algorithms. The symbol ∗ indicates that the improvement over the best baseline is statistically significant
based on a two-sided 𝑡-test with 𝑝-value < 10−6.

Singapore Toronto Seattle Melbourne

Model P R F1 P R F1 P R F1 P R F1

TransE [6] 4.71 16.3 7.29 5.28 12.82 7.47 4.51 11.07 6.4 4.25 9.56 5.88
(± 0.41) (± 0.28) (± 0.79) (± 0.55)

SimplE [30] 6.64 19.27 9.87 4.98 18.3 7.82 7.75 9.84 8.66 6.9 13.33 9.09
(± 0.96) (± 0.71) (± 1.05) (± 0.93)

ComplEx-OWE [47] 60.18 44.29 51.02 60.5 41.13 48.97 40.21 29.77 34.2 66.54 41.9 51.42
(± 0.39) (± 0.88) (± 0.87) (± 1.02)

ConMask [50] 63.28 50.1 55.93 67.86 41.66 51.58 58.81 40.45 47.98 72.89 44.44 55.21
(± 0.46) (± 0.78) (± 0.32) (± 0.6)

KG-BERT (a) [65] 85.38 86.2 80.64 77.55 75.46 76.33 74.81 70.27 72.39 78.1 76.46 77.25
(± 1.31) (± 0.99) (± 1.44) (± 1.71)

KG-BERT (b) [65] 85.80 78.11 81.77 82.58 77.21 79.78 77.61 69.11 73.02 76.44 72.24 74.52
(± 0.7) (± 1.25) (± 1.09) (± 1.95)

PKGC [38] 80.55 73.38 76.79 84.13 67.87 75.13 78.44 62.58 69.61 77.7 73.96 75.78
(± 1.09) (± 0.91) (± 0.9) (± 2.26)

StAR [58] 65.15 72.66 68.7 76.48 80.1 78.24 60.96 58.24 59.56 81.92 83.97 82.93
(± 0.72) (± 1.51) (± 0.47) (± 0.86)

KG-BERT (+GH) 82.99 86.66 84.78 86.26 78.01 81.92 73.8 78.95 76.28 84.11 77.28 80.55
(± 1.11) (± 1.28) (± 1.67) (± 1.23)

Geo-ER [4] 88.27 84.7 86.44 87.25 81.74 84.4 78.58 78.91 78.74 82.6 88.21 85.31
(± 0.88) (± 1.16) (± 1.25) (± 1.47)

GTMiner 90.07 88.15 89.1∗ 86.91 88.4 87.64∗ 80.56 80.95 80.75∗ 87.87 87.86 87.87∗
(± 1.04) (± 1.49) (± 1.21) (± 1.31)

GTMiner (+Ex) 90.17 89.25 89.65 87.0 89.29 88.13 80.8 82.37 81.57 88.1 88.78 88.24
(± 1.13) (± 1.39) (± 1.29) (± 1.22)

GTMiner (+Ex +Re) 91.33 89.25 90.27 88.08 89.23 88.66 81.27 82.37 81.81 88.27 88.69 88.47
(± 1.09) (± 1.33) (± 1.28) (± 1.2)

Δ𝐹 1 +3.82% +4.26% +3.07% +3.16%

is introduced with a contrastive loss function, which minimizes the distance between the entities,
in the embedding space.
• KG-BERT (+GH) is a new version of KG-BERT(b) created by us to make it spatially-aware.
Specifically we use GeoHash to encode the position of each entity into a fixed-size string, and
include it as an additional attribute. We set the precision 𝑝 of GeoHash to 8, which is the precision
level that best performed in our experiments. At 𝑝 = 8, each GeoHash identifier refers to a unique
region on the earth of size 28.2𝑚 × 19𝑚.
• Geo-ER [4] is a recent study in geospatial data integration, based on BERT language model,
a distance embedding component, and a neighborhood attention mechanism. It uses a simple
concatenation of the different components, with an MLP. Geo-ER was designed to predict equality
relationship. We extend it to predict multiple relations, by modifying the last fully-connected
layer.
• GTMiner is GTMiner Relation Prediction module, based on pre-trained LMs, a geospatial encoder
and the Geo-Textual representation, based on cross-modal attention.
• GTMiner (+Ex) is GTMiner proposed framework, with the Extend algorithm applied on the
output triples from the Relation Prediction module.
• GTMiner (+Ex +Re) is GTMiner proposed framework, with the Extend and Repair algorithms
applied on the output triples from the Relation Prediction module.

5.4 Experimental Settings
For each dataset, we randomly split 50%, 20%, and 30% of the samples as the training, validation,
and test sets, respectively. During the splitting phase, we keep the ratio of triples for each relation,
uniform. StAR and KG-BERT (a) require negative sampling during the training. Following their
settings, we sample 3 negative samples for each positive one for StAR, and 1 negative sample for

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 93. Publication date: May 2023.



93:18 Pasquale Balsebre et al.

each positive for KG-BERT (a). We use triple corruption on the relation to generate negative samples.
In all the experiments, we set the max sequence length to be 128 and the learning rate to be 3e-5
with a linearly decreasing learning rate schedule. In all the methods involving a language model,
we use BERT-base pre-trained weights, with a 768-dimensional hidden size and turn on fine-tuning.
The embedding size of our geospatial encoder module is set to 128. All the models are run for 10
epochs: at each epoch, the models are validated on the validation set, and the checkpoint with
highest F1-score on the validation set, is saved and tested on the test set. We repeat the experiments
10 times, and report the average performance, with standard deviation. The F1-score is computed
as the harmonic mean between precision and recall, and a true positive is defined as any correctly
classified geospatial relationship, except unknown. This particular choice stabilizes the results with
respect to the distance threshold 𝑑𝑡ℎ chosen in the Candidate Selection step (Sec. 4.2). In other
words, choosing a large 𝑑𝑡ℎ , would include in the candidate set, a large number of entities that do
not share any geospatial relationship and, being located at a high distance, are trivial to classify,
artificially increasing the performance.

5.5 Performance Analysis
Table 5 shows the results on the knowledge graph completion task. As expected, the performance
of methods based on structural information alone, is extremely poor. We find that most of the
relationships correctly predicted by TransE and SimplE, belong to the part_of category, and are for
nodes that have a same_as relation with a node seen in the training set, being part of the same AOI.
This is, in fact, a case where structural information can be of help. Textual-encoding algorithms
that leverage pre-trained language models achieve much higher performance than those relying
on GloVe word embeddings. ConMask performs better than ComplEx-OWE, despite the latter
being a hybrid approach. ConMask uses a more effective word aggregation strategy, based on
attention mechanism, compared to ComplEx-OWE, which utilizes a simple average. This shows
that a better textual encoding technique improves the performance more than adding structural
information. Consistently with the results in [65], KG-BERT (b) delivers better results than (a).
Besides, it does not require negative sampling, making the algorithm more efficient than (a). StAR
achieves lower performance compared to similar LM-based architectures. As discussed in Section
4.2, it is a siamese-style architecture, and combines a textual-encoding loss, with a topology-based
contrastive loss. Cross-entity attention proved to be of crucial importance in the geospatial KGC
task. Geospatial-aware algorithms achieve better results on all the datasets. Specifically, KG-BERT
(+GH) is our modified version of KG-BERT (b), that is able to read the spatial position of the
entities in textual form, by means of GeoHash algorithm. GeoHash’s hyper-parameter, the precision
𝑝 , is tuned on the validation set. Both Geo-ER and GTMiner, leverage a pre-trained LM for the
textual-encoding part, and have a separate component for the geospatial encoding. The cross-
modal interaction introduced in our system, leads to significantly higher results on every dataset.
Moreover, the Extend (+Ex) algorithm always delivers higher results in terms of Recall. The Repair
(+Re) algorithm, instead, improves the precision, and the correctness of the KG.

Finally, we notice an increase of performance, linked to the quality of the data, specifically the
availability of Address attribute. The higher performance on the Singapore dataset, compared to
Toronto and Melbourne, shows that algorithms able to represent textual attributes benefit from
address information. Seattle is the only exception to this. It has the highest percentage of entities
with non-null address information, but most of the baselines achieve lower performance on it.
Upon closer investigation, we find that in Seattle, a POI may have a different address compared to
the building where it is located. In addition, many AOIs are located in close proximity in the busiest
districts of the city, thus making the prediction of geospatial relationships more challenging.
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Table 6. Ablation study to motivate our design choices. Baseline refers to GTMiner’s Relation Prediction
module, without refinement algorithms.

Model Singapore Toronto Seattle Melbourne

Baseline 89.1 87.64 80.75 87.87

Dot-Product 88.74 87.81 80.71 87.48
(-0.36%) (+0.17%) (-0.04%) (-0.39%)

Euclidean 88.25 87.32 80.55 87.19
(-0.85%) (-0.32%) (-0.2%) (-0.68%)

No GT 86.85 84.59 79.03 85.71
(-2.25%) (-3.05%) (-1.72%) (-2.16%)

No GT + No GE 81.92 80.58 73.11 78.09
(-7.18%) (-7.06%) (-7.64%) (-9.78%)

Table 7. The impact of different pre-training strategy and language model size, on our geospatial KGC task.

LM Singapore Toronto Seattle Melbourne

BERT 89.1 87.64 80.75 87.87
DistilBERT 87.96 85.4 80.74 84.96
RoBERTa 88.71 84.45 81.11 86.92

RoBERTa Large 89.98 88.26 76.33 79.21

5.6 Ablation Study
5.6.1 Design choices. In order to motivate our design choices, we conduct an ablation study and
report the results in Table 6. The Baseline model is our original architecture; to correctly analyze the
performance of each design choice, we turn off the Extend and Repair algorithms. The first change
we made is in the attention mechanism used to compute the Geo-Textual interaction: we use dot
product attention [57] in place of additive attention. Although the difference is not substantial, the
additive attention performs slightly better on average, likely because there is no semantic similarity
between textual data and distance embedding, and additive attention does not require a high dot
product for two vectors to have a high attention score. Secondly we use Euclidean distance as
the distance function 𝑓𝑑𝑖𝑠𝑡 in place of Haversine formula. As expected, a performance decrease is
observed: in fact Haversine formula is more accurate in computing the distance between two points
that lay on an irregularly shaped ellipsoid, like the Earth. In No GT, we remove the Geo-Textual
interaction altogether to showcase the impact of our novel cross-modal interaction mechanism.
Finally, we remove the Geospatial Encoder (GE), which forces us to remove also the Geo-Textual
interaction, as it is not applicable anymore. The performance drop in this last case is catastrophic,
as the model loses completely its geospatial awareness.

5.6.2 Impact of Language Model. In this section we evaluate the performance of our algorithm,
using different pre-trained language models, to show the effect of different pre-training approaches.
As in the previous section, we turn off both Extend and Repair algorithms. Table 7 illustrates the
results of this experiment. We notice that especially in bigger datasets, like Singapore and Toronto,
larger language models achieve higher performance. RoBERTa large, has a 1024-dimensional hidden
size, compared to the 728-dimensional of the other models. It suffers especially in the datasets
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Table 8. Relation-specific performance of Geo-ER and GTMiner. Bold denotes best performance, underline
denotes the best Base model.

Geo-ER GTMiner
Relation Base (+E) (+E +R) Base (+E) (+E +R)

Sin
part_of 86.18 86.6 87.03 88.72 89.47 90.35
same_as 88.92 88.92 89.47 90.4 90.4 90.61
serves 85.85 85.85 85.85 89.77 89.77 89.77

Tor
part_of 84.24 85.26 85.4 88.06 88.79 89.15
same_as 89.17 89.17 89.41 89.9 89.9 90.14
serves 80.78 80.78 80.78 83.11 83.11 83.11

Sea
part_of 76.9 77.71 78.0 80.06 81.35 81.7
same_as 84.12 84.12 84.26 83.33 83.33 83.39
serves 79.98 79.98 79.98 80.81 80.81 80.81

Mel
part_of 83.9 84.38 84.48 87.03 87.55 87.8
same_as 90.14 90.14 90.14 90.81 90.81 91.09
serves 87.43 87.43 87.43 88.93 88.93 88.93

COL
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[SEP]

Fig. 6. (a) A triple whose relation is to be predicted. (b) Word relevance scores for Geo-ER. (c) Word relevance
scores for GTMiner. ’##’ is a special identifier used by BERT tokenizer to signal that a word has been split.

smaller in size, with notably lower F1 score. In contrast with existing studies, we decide to use
BERT model for all the datasets, in the main experiments, to ensure a fair comparison with the
other models.

5.7 Comparison with Geo-ER
Geo-ER is capable of processing textual and geospatial information, and thus represents the closest
competitor to GTMiner’s Relation Prediction module. Nonetheless, the two information types
are simply concatenated, without any form of interaction, limiting the capability of the model
to contextualise the distance with information contained in the text. In this section we make a
side-by-side comparison to analyze how the two algorithms perform on specific relations, and
how the multi-modal interaction improves GTMiner’s accuracy. As shown in Table 8, both the
algorithms benefit from the refinement module, which rewards GTMiner slightly more, due to the
higher number of relationships that are correctly predicted during the Relation Prediction phase.
F1-scores are balanced among the classes, and slightly higher on same_as relation. While Geo-ER
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Fig. 7. Efficiency analysis: time required by different models for one training epoch (Fig. a-d); time required
by different models for inference on the test set (Fig. e-h).

uses contextual information to improve entity resolution capabilities, outperforming GTMiner on
one dataset, the former has an even clearer advantage on the other two spatial relationships.

5.7.1 Impact of Multi-Modal Interaction. Figure 6 shows a triple, whose relation is correctly
classified by GTMiner, using the multi-modal interaction, whereas Geo-ER fails. In Figure 6a, we
show the plain text of the triple, after tokenization, for readability purposes. The head entity is a
7eleven convenience store, while the tail entity is a Shell gas station. The two entities are located
89m away, and are selected as candidates during the Candidate Selection step. The ground truth is 0
(unknown), meaning that none of the 3 spatial relationships holds. Figure 6b shows the importance
of each word for Geo-ER decision, using the Lime7 [44] text explaining library. Although Geo-
ER is able to embed distance information, the importance that each word has in the final [𝐶𝐿𝑆]
embedding is computed independently of the distance. Geo-ER’s decision mainly relies on names
and addresses, and finally the distance is deemed short enough for the head entity to be located
inside the tail, with a final prediction of 2 (part_of ). In our analysis we notice that Geo-ER often
neglects category information, since most instances can be solved without using it. Figure 6c shows
the relevance scores, after the multi-modal interaction, that lead GTMiner to output the correct
prediction. Even though 89m is a short distance for many AOIs, such as airports and shopping
centers, an entity at such distance is unlikely to be located inside a gas station. In accordance with
our intuition, the distance has a pivotal role also in the selection of words that will contribute to
the final decision.

5.8 Efficiency Analysis
We evaluate the efficiency of the baselines, in terms of training and inference time. Figures 7a-7d
illustrate the results. ComplEx-OWE and ConMask are the most efficient ones since they are not
based on pre-trained LMs or on LSTM units. On the other hand, KG-BERT (a) and StAR, are the
7https://github.com/marcotcr/lime
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least efficient since they require negative sampling. Geospatial-aware models are less efficient
than KG-BERT (b) and PKGC, but they report much higher performance. KG-BERT (GH) processes
longer text sequences, due to the addition of the GeoHash sequence of characters; Geo-ER, instead,
uses a neighborhood embedding which involves graph attention; GTMiner is slightly more efficient
as it involves a geospatial encoder and a cross-modal attention, whose complexity grows linearly
with the sequence length.

Figures 7e-7h illustrate the the time required by each model to perform inference on the test set.
The difference between KG-BERT (a) and other models is further exacerbated at prediction time, as
it needs to process the candidate entities with each possible relation, and score them by plausibility.
We show also the impact of Extend and Repair algorithms on the total inference time. As depicted
in the figures, the refinement process weighs only marginally on the test set prediction time.

6 CONCLUSIONS AND FUTUREWORK
In this paper we proposed to mine geospatial relationships from a database of spatial entities. We
show that the task is timely and relevant, as a geospatial knowledge graph brings considerable
advantages in a great number of applications. We proposed a solution to construct such KG,
called GTMiner, composed of three modules, for candidate selection, relation prediction, and
KG refinement. Future work directions include building a large-scale, fine-grained, geospatial
KG, and designing new algorithms to leverage the geospatial knowledge to offer more accurate
recommendations, improve advertising and logistics services.
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