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Abstract
Pre-trained Foundation Models (PFMs) have ushered in a paradigm-
shift in AI, due to their ability to learn general-purpose represen-
tations that can be readily employed in downstream tasks. While
PFMs have been successfully adopted in various fields such as NLP
and Computer Vision, their capacity in handling geospatial data re-
mains limited. This can be attributed to the intrinsic heterogeneity
of such data, which encompasses different types, including points,
segments and regions, as well as multiple information modalities.
The proliferation of Volunteered Geographic Information initiatives,
like OpenStreetMap, unveils a promising opportunity to bridge this
gap. In this paper, we present CityFM, a self-supervised framework
to train a foundation model within a selected geographical area.
CityFM relies solely on open data from OSM, and produces mul-
timodal representations, incorporating spatial, visual, and textual
information. We analyse the entity representations generated by
our foundation models from a qualitative perspective, and conduct
experiments on road, building, and region-level downstream tasks.
In all the experiments, CityFM achieves performance superior to,
or on par with, application-specific algorithms.

CCS Concepts
• Information systems→ Data extraction and integration; •
Computing methodologies→ Unsupervised learning.
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1 Introduction
The past decade has witnessed a shift from the exclusive provision
of geospatial data from national mapping agencies, to freely avail-
able, volunteer-based sources. Researchers and practitioners from
different disciplines have increasingly recognised the enormous
potential of Volunteered Geographic Information (VGI) initiatives,
and this trend has been observed in fields such as GIScience, urban
planning, cartography and computer science, among others [24].
OpenStreetMap (OSM), one of the most successful VGI projects,
aims at building and maintaining a free, editable map of the world.
Researchers have harnessed OSM data to train a plethora of algo-
rithms for various tasks, such as traffic analysis [25, 42], land use
prediction [23] and recommendation [33]. A typical approach, in
the geospatial domain, is to design task-specific algorithms for each
downstream application. This presents two major limitations: (1)
the models require a large number of labeled samples for training,
and (2) the models and representations learned for one task are not
necessarily useful for other tasks.

A promising solution to alleviate these limitations lies in adopt-
ing Pre-trained Foundation Models (PFMs). A key advantage of
PFMs is that the pre-training phase is carried out self-supervisedly,
without the need of human annotations; this allows the model to
access larger amounts of data and produce effective representations
that generalize across tasks. Given the scarcity of labeled geospatial
data, and the diverse range of applications it serves, the adoption
of PFMs in the geospatial domain presents promising opportunities
[29]. However, such adoption is a non-trivial process, due to the
fact that geospatial objects are characterized by multi-modal infor-
mation, including a position in the space, textual annotations, and
physical attributes such as shape and size. In addition, geospatial
data exhibit inherent heterogeneity, requiring different approaches
to handle the diverse entity types. For instance, OpenStreetMap’s
database stores spatial entities categorized into three types: Nodes
to represent Points of Interest (POIs); Ways are multi-point geome-
tries, comprising polylines and polygons, and are used to represent
roads, bridges or large POIs; Relations are lists of Nodes, Ways, or
Relations, called members, and represent relationships between
them. Additionally, each entity can be optionally associated with a
set of textual Tags, stored as key-value pairs.

Existing studies have primarily focused on a single data type, e.g.,
entities of type Way (polylines), to build a road network for traffic
speed prediction [21, 37]. While this approach is intuitive, it fails
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to leverage the diverse and multimodal nature of geospatial data
types, which convey unique information aspects of the same entity.
For example, a large portion of buildings, in OSM, is represented as
polygons, but only ∼20% is associated with a tag describing its func-
tionality. Previous research works [3, 39, 46] frequently omitted
untagged spatial entities, considered less informative; yet an impor-
tant hint on an entity’s functionality can be provided by auxiliary
information, such as its shape, size and position. Other studies have
used supplementary data of different modalities, including human
trajectories [8] and street view images [38], to complement OSM
data and enhance their framework’s performance. However, such
data may be expensive to obtain, or available only in specific cities.

In this study, we propose CityFM, a framework to train a founda-
tion model within a selected geographical area of interest, such as
a city, capable of producing meaningful representations for geospa-
tial entities of different types, which can be easily employed in a
wide range of downstream tasks. In adherence to the best practices
of data ownership and reproducibility, we design CityFM to rely
solely on OSM data, which is freely available and accessible glob-
ally. CityFM is designed as a self-supervised learning architecture,
based on mutual information maximization, capable of capturing
the textual, visual and spatial characteristics of an entity. Comput-
ing effective and meaningful representations for OSM entities is
especially challenging, due to the diversity of the available data and
the different skills, tools and annotation styles of the contributors,
which lead to sparsely and heterogeneously annotated entities. In
fact, OSM promotes the so-called Any tags you like policy, that lets
annotators create their own keys and values for tags of entities they
are adding. CityFM handles spatial objects of different types and is
able to infer missing values, using other aspects of the same object,
or entities in the spatial context. Furthermore, previous research
works [2, 5, 8, 35, 38, 39] have often overlooked Relations, owing
to the very distinctive types of information represented. We intro-
duce Relations in our self-supervised framework, showing they
incorporate information about connectivity and public transports,
and can guide the model to recognise important transportation
hubs and arterial roads in a city. Finally, we conduct qualitative
analyses, and quantitative experiments on a set of road, building
and region-level downstream tasks, to demonstrate the utility of the
representations produced by our foundation models. In conclusion:

• We propose a new framework, CityFM, for general-purpose rep-
resentation learning in the geospatial domain, using exclusively
volunteered multimodal data from OpenStreetMap.

• We design a self-supervised task, based on mutual information
maximization, that introduces Nodes, Ways and Relations in the
learning framework, to train a geospatial PFM within a selected
area of interest. CityFM-trained models are multimodal and can
integrate an entity’s textual, visual and spatial aspects.

• We conduct experiments on road, building and region-level down-
stream tasks to showcase the effectiveness of the embeddings
produced by our foundation models, compared to algorithms
tailored for the specific tasks. The code, data, and pre-trained are
made available1.

1https://github.com/PasqualeTurin/CityFM

2 Impact and Applications
CityFM is a framework to pre-train a foundation model, without
the need of human supervision, in a region of any shape and size.
It stands out as the most comprehensive representation learning
framework for geospatial vector data. CityFM’s comprehensive-
ness in encoding various geospatial entities shapes the model to
be highly effective. We chose to utilize OpenStreetMap data for
pre-training, due to the fact that it is the most complete, open
source, geospatial database. Nonetheless, different data sources,
with similar geospatial entity types, can be employed in the CityFM
framework. In our open-source software, released on GitHub3, we
show how CityFM can be readily used to produce suitable repre-
sentations of any JSON-formatted spatial entity, from any source.
In our experiments, such representations demonstrated to result in
superior performance in an array of downstream tasks, spanning
urban sensing, geospatial data management and city digital twins,
when compared to existing geospatial foundation models, such as
SpaBERT [44], general-purpose embeddings, such as GeoVectors
[35], and even methods that were tailored for the specific tasks.

2.1 Predicted Impact
We envision that CityFM, and future iterations of pre-trained foun-
dation models, will have a broad impact in geospatial applications.

2.1.1 Urban Applications. First, the quality of the entities’ embed-
dings heavily affects the performance of machine learning models
employed in downstream urban task. For instance, in next POI
recommendation [9, 27, 43], suitable semantic and positional en-
codings are pivotal to produce relevant results. In addition, CityFM
advances the state-of-the-art in road- (polyline) and building- (poly-
gon) based tasks, which can produce a positive impact in many
applications, such as population estimation, property price infer-
ence and travel time estimation. In Section 5.2, we show how the
road segments’ representations can be used to infer traffic speed
with better accuracy compared to application-specific algorithms.

2.1.2 Geospatial Data Management. CityFM foundation models
can ease the process of navigating large geospatial databases, with
different entity types, providing universal representations. This
can support database applications such as region search [45], geo-
graphic information retrieval [10, 11, 13], and data integration [4],
by reducing the feature extraction cost. For instance, in data inte-
gration, algorithms are typically designed to learn an embedding
for each object, to represent similarity between them, and be used
to compute a matching probability [4]. The PFMs introduced in
this paper, generate meaningful and multimodal representations for
various object types and positions, that can be readily used to query
similar objects. Similarly, Geographic Knowledge Graphs (GeoKGs)
[5] can benefit from the representations produced by our models:
the high-dimensional embedding of geographic coordinates, can,
in fact, lift the quality of the node representation in the KG.

2.1.3 City Digital Twin. Enabling Smart Cities through Digital
Twins is a promising path [26]. Being natively multimodal, our
models are capable of fusing the wealth of data from different
sensors, to provide us with a holistic understanding of our cities.
We design a specific task to demonstrate the utility of our visual
representations, to predict the functionality of buildings in the city.
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Figure 1: CityFM’s self-supervised pre-training framework. The three contrastive objectives are highlighted: (1) Text-based
objective; (2) Vision-Language multimodal objective; (3) Road-based objective. Some dashed red lines are omitted for clarity.

The functionality of a building is a crucial feature to predict, for
instance, its energy consumption [32]. The embeddings produced
by CityFM for the different types of entities, can be regarded as a
digital replica of the spatial objects in the real world, and can be
leveraged by experts for urban planning and land use optimization.

3 Preliminaries
In this section, we provide a detailed description of the data used
in this study, and a formal problem definition.

Definition 2.1 (Node): A Node 𝑛 is a point with a geographic po-
sition 𝑛.𝑝 = (𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔). It can be associated with a set of tags 𝑛.𝑡 =
{𝑡1, ..., 𝑡𝑚}, to represent a Point of Interest. If 𝑛.𝑡 = ∅ the node is typ-
ically used to construct a more complex geometry, e.g., a polygon,
and thus it is not considered as an independent entity.

Definition 2.2 (Way): A Way𝑤 is associated with an ordered list of
nodes𝑤.𝑛 = [𝑛1, ..., 𝑛𝑘 ], that defines its shape as a polyline. If𝑛1 = 𝑛𝑘 ,
𝑤 is a closed polygon. Similar to nodes, a Way can be optionally
associated with a set of tags. Ways of type polyline are used to
represent linear features such as roads, bridges and rivers. Ways
of type polygon typically represent larger POIs, such as buildings,
universities and airports.

Definition 2.3 (Relation): A Relation 𝑟 is associated with an
ordered list of entities 𝑟 .𝑚 = [𝑒1, ..., 𝑒𝑟 ], called members, which can
be a combination of nodes, ways and relations. A Relation can
be associated with a set of tags, and each of its members can be
associated with a string, defining its role in the relation. An example
of Relation is a bus loop, where a set of polylines (Ways) defines
its path, and the bus stops are POIs (Nodes).

Definition 2.4 (Geospatial Foundational Pre-training): Given a tar-
get geographical area (e.g., a city), we aim to pre-train a general
model, using OpenStreetMap’s geospatial entities in the target area,
in a self-supervised fashion. In order to be considered acceptable, such
model is expected to generate spatial entity representations that are
suitable for use in geospatial downstream tasks.

4 CityFM
CityFM is a framework that pre-trains a geospatial foundation
model, using OpenStreetMap’s entities in a target region of interest.
The workflow involves a data preprocessing part, that removes per-
sonal information, including phone numbers, URLs and addresses.

4.1 Self-Supervised Learning
In this section, we introduce and provide the underlying motiva-
tions for the CityFM framework, depicted in Figure 1. As illus-
trated in Section 3, large-scale geospatial databases, such as Open-
StreetMap, encompass diverse entity types and data modalities.
While the available information is abundant, textual annotations,
such as the functionality of a building or the surface type of a
road, are sparsely distributed and vary in their representation, due
to the lack of an underlying ontology. This significantly reduces
the amount of training data available, and the capability of deep
learning algorithms to learn meaningful representations.

The purpose of the self-supervised learning phase, is to pre-train
a general model to learn a unified representation of the spatial
objects, using the different entity types and information modalities
available. We design three different contrastive objectives, using
nodes, polylines, polygons and relational information. The first
objective is a mutual information-based text-to-text objective, and
is used to train a language model for representation learning of the
textual part of the entities. The second one is a vision-language
contrastive objective, whose purpose is to learn a visual represen-
tation of an object’s shape, that can indicate its functionality. The
third one is a road-based context-to-context objective, that lever-
ages public transportation information, found in entities of type
Relation, to identify road segments with similar functionalities.

4.1.1 Text-based Contrastive Objective. A crucial part of a geospa-
tial entity’s textual annotation is the information that denotes its
functionality, and a common approach in the field is to partition
categories into one-hot-encoded classes [23, 39]. In OSM, this is
challenging as tags do not follow a pre-defined, structured ontology.
For instance, a node could be tagged with the key-value pair "shop:
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Table 1: A qualitative comparison between BERT and CityFM
(following text-based contrastive pre-training).

BERT

𝐸𝑛𝑡𝑖𝑡𝑦1 𝐸𝑛𝑡𝑖𝑡𝑦2 Cosine Similarity

𝑎𝑚𝑒𝑛𝑖𝑡𝑦 : ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑎𝑚𝑒𝑛𝑖𝑡𝑦 : ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 1.0
𝑎𝑚𝑒𝑛𝑖𝑡𝑦 : 𝑐𝑎𝑓 𝑒 0.91
𝑎𝑚𝑒𝑛𝑖𝑡𝑦 : 𝑟𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡 0.90
𝑎𝑚𝑒𝑛𝑖𝑡𝑦 : 𝑑𝑜𝑐𝑡𝑜𝑟𝑠 0.87
...
𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 : 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 0.78
ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 : 𝑐𝑙𝑖𝑛𝑖𝑐 0.77

CityFM

𝐸𝑛𝑡𝑖𝑡𝑦1 𝐸𝑛𝑡𝑖𝑡𝑦2 Cosine Similarity

𝑎𝑚𝑒𝑛𝑖𝑡𝑦 : ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑎𝑚𝑒𝑛𝑖𝑡𝑦 : ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 1.0
ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 : 𝑐𝑙𝑖𝑛𝑖𝑐 0.95
𝑎𝑚𝑒𝑛𝑖𝑡𝑦 : 𝑑𝑜𝑐𝑡𝑜𝑟𝑠 0.89
ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 : 𝑝ℎ𝑎𝑟𝑚𝑎𝑐𝑦 0.79
𝑠ℎ𝑜𝑝 :𝑚𝑒𝑑𝑖𝑐𝑎𝑙_𝑠𝑢𝑝𝑝𝑙𝑦 0.74
...
𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 : 𝑔𝑟𝑒𝑒𝑛ℎ𝑜𝑢𝑠𝑒 -0.22
𝑡𝑜𝑢𝑟𝑖𝑠𝑚 : 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 -0.23

florist", which is very specific and the key shop alone would provide
sufficient information. On the other hand, in a polygon tagged as
"amenity: place_of_worship", the key amenity is too generic, and it
is used for different classes such as restaurants and hospitals. In
addition, certain unique keys or values, devised by individual con-
tributors, are too sparsely used, which hinders the model’s ability
to learn a meaningful representation. Because of this, we used a pre-
trained LM, i.e. BERT [14], to provide an initial representation for
the textual part of the entity. Formally, given an entity 𝑒 , associated
with a set of tags 𝑒.𝑡 = {𝑡1, ..., 𝑡𝑚}, where each tag 𝑡𝑖 is a key-value
pair 𝑘𝑖 : 𝑣𝑖 , its high-dimensional representation 𝒉𝑒 is computed
using BERT and a 2-layer MLP to map it into a multimodal space:

𝒉𝑒 = 𝑀𝐿𝑃 (𝐴𝑣𝑔(𝐵𝐸𝑅𝑇 (𝑆𝑒.𝑡 ))) (1)

𝐴𝑣𝑔 is an average-pooling layer to aggregate the BERT representa-
tions of the words in the sequence. 𝑆𝑒.𝑡 is the serialized sequence
of comma-separated tags, following the standard format for BERT
model:

𝑆𝑒.𝑡 = [CLS] 𝑡1, 𝑡2, ..., 𝑡𝑚 [SEP]

The purpose of the first contrastive objective is to push the em-
beddings of the entities closer in the high-dimensional space, if
they are observed in spatial proximity. To achieve this, we group
entities located on the same road segment and maximise the similar-
ity between a randomly sampled entity and its context, computed
as the average of the entities in the same group. This particular
choice is motivated by the expectation that entities situated within
the same road segment, exhibit stronger correlations [15]. Given
the fact that the entities in a road context are aggregated with
an average-pooling layer, we add an empty node in each group,
to represent emptiness in the context. Such node has a single tag

𝑛.𝑡 = {𝑐𝑜𝑛𝑡𝑒𝑥𝑡 : 𝑛𝑜𝑛𝑒}. We employ a noise contrastive estimation
(NCE) [17] loss function, where negative samples are contexts of
entities sampled from other groups, in the same minibatch:

L𝑁𝐶𝐸𝑇 = − 1
𝐵

𝐵∑︁
𝑖

𝑙𝑜𝑔(
𝑒𝑥𝑝 ( 𝒉

⊤
𝑖 𝒄𝑖
𝜏 )∑𝐵

𝑗 𝑒𝑥𝑝 (
𝒉⊤
𝑖
𝒄 𝑗
𝜏 )

) . (2)

In Eq. 2, 𝐵 is the minibatch size, 𝒉𝑖 is the initial representation for
entity 𝑒𝑖 , computed as in Eq. 1, 𝜏 (= 0.5) is a temperature parameter,
and 𝒄𝑖 is the representation of C𝑖 , the context entity 𝑒𝑖 :

𝒄𝑖 = 𝐴𝑣𝑔({𝒉𝒆 : 𝑒 ∈ C𝑖 }) (3)

We train both the languagemodel and theMLP, tominimizeL𝑁𝐶𝐸𝑇 .
Table 1 shows a qualitative comparison between BERT and

CityFM. Specifically, we report the cosine similarity between the
embedding of some pairs of entities, using their categorical tags. We
notice that the similarity of BERT representations is heavily affected
by the number of words that the entities share, such as amenity. In
contrast, CityFM, following the text-based contrastive pre-training,
is capable of capturing a deeper semantic similarity, based on the
spatial co-occurrence of the entities. As expected, entities that are
frequently observed in isolation, such as {𝑎𝑚𝑒𝑛𝑖𝑡𝑦 : 𝑓 𝑢𝑒𝑙}, demon-
strate significantly higher similarity with {𝑐𝑜𝑛𝑡𝑒𝑥𝑡 : 𝑛𝑜𝑛𝑒}.

4.1.2 Vision-Language Contrastive Objective. While a large amount
of entities, in the OpenStreetMap’s database, is represented as a
polygon, only a small fraction (∼20%) is associated with tags. Such
untagged entities have often been considered irrelevant in exist-
ing studies [3, 39, 46], and therefore discarded. Nonetheless, valu-
able insights about a building’s functionality can be provided by
auxiliary information, such as its shape and size. Motivated by
this, we design a cross-modal contrastive learning objective, dur-
ing which our model is trained to produce a representation for
a polygon’s shape, that is as close as possible to the representa-
tion of its functionality, in high-dimensional space. During this
pre-training phase, we utilize only polygons associated with tags.
Formally, given an entity 𝑒 , of type Way, associated with an ordered
list of nodes 𝑒.𝑛 = [𝑛1, ..., 𝑛𝑘 ], where 𝑛1 = 𝑛𝑘 , and a set of tags
𝑒.𝑡 = {𝑡1, 𝑡2, ..., 𝑡𝑚}, we compute a high-dimensional representation
of its shape,

𝒔𝑒 = 𝑀𝐿𝑃 (𝑅𝑒𝑠𝑁𝑒𝑡18(𝑅𝑎𝑠𝑡𝑒𝑟 (𝑒.𝑛))), (4)

where 𝑅𝑎𝑠𝑡𝑒𝑟 is a rasterization function that maps a closed poly-
gon, represented as an ordered list of nodes, to a binary image;
𝑅𝑒𝑠𝑁𝑒𝑡18 [18] is a pre-trained vision algorithm that computes a
high-dimensional representation of an input image. Since the ras-
terized polygon covers a fixed portion of the image, independently
of its size, we separately compute and embed the surface area of
the building as follows:

𝒂𝑒 = 𝑀𝐿𝑃 ( 𝑆𝑢𝑟 𝑓 𝑎𝑐𝑒 (𝑒.𝑛)
𝑚𝑎𝑥𝑎

) . (5)

In Eq. 5, 𝑆𝑢𝑟 𝑓 𝑎𝑐𝑒 is a function to compute the surface area of a
polygon in𝑚2, and𝑚𝑎𝑥𝑎 is the maximum area of a polygon, used as
a normalization constant. The visual representation of the building,
𝒗𝑒 , is subsequently computed as the arithmetic mean of its shape
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Figure 2: Some examples demonstrating CityFM’s capability to associate the visual characteristics of OpenStreetMap’s polygons,
with their corresponding functionality. We report the similarities of the shape and size with the textual encodings of the tags.

and size representations, and a 2-layer MLP is used to map it into
the multimodal space:

𝒗𝑒 = 𝑀𝐿𝑃 ( 𝒔𝑒 + 𝒂𝑒
2

). (6)

Finally, the following contrastive loss function is used to maximise
the similarity, in high-dimensional space, between a building’s
textual representation 𝒉𝑒 , computed as in Eq. 1, and its visual rep-
resentation 𝒗𝑒 , while minimizing the similarity with the visual
representations of other polygons in the same minibatch:

L𝑁𝐶𝐸𝑉 = − 1
𝑃

𝑃∑︁
𝑖

𝑙𝑜𝑔(
𝑒𝑥𝑝 ( 𝒉

⊤
𝑖 𝒗𝑖
𝜏 )∑𝑃

𝑗 𝑒𝑥𝑝 (
𝒉⊤
𝑖
𝒗𝑗
𝜏 )

), (7)

where 𝑃 is the number of polygons in the minibatch, and 𝜏 (= 0.5),
is a temperature parameter.

In Figure 2, we showcase CityFM’s capability to associate the
visual characteristics of OpenStreetMap’s polygons2, with their
corresponding functionality. The figure illustrates the similarity of
the polygons to some categorical tags in OSM, with the ground truth
highlighted in bold font. In addition, we analyze the contribution
of the shape and size of the building, by reporting the similarity of
their individual representations.

4.1.3 Road-based Contrastive Objective. As defined in Section 3,
OSM objects of type Relation are characterized by an ordered list
of entities, called members, that together describe a more complex
object. Relationsmostly represent public transportation routes, such
as bus loops and train lines. Although public transportation covers
the vast majority of urban areas, some roads represent critical links
between transportation hubs and key regions of the city. Such roads,
often referred to as arterial roads, experience higher traffic volumes
and are traversed by a larger number of public means, compared
to others. Figure 3 (top) illustrates all the road segments (polyline
ways) in the city of Singapore that are members of at least one
relation tagged as "route: bus", which implies that at least one bus
loop traverses the road. In the bottom image of the figure, each road
2The polygons in Fig. 2 are tagged buildings that have been left out during pre-training,
for experimental purposes

segment is weighted by the number of bus loops that traverse it.
Formally, given an entity 𝑒 , of type Way, associated with an ordered
list of nodes 𝑒.𝑛 = [𝑛1, ..., 𝑛𝑘 ], where 𝑛1 ≠ 𝑛𝑘 , its transportation
link weight 𝑙𝑒 is computed as the number of relations containing 𝑒
as a member:

𝑙𝑒 = |{𝑟 : 𝑒 ∈ 𝑟 }|, (8)

𝑙𝑒 =
𝑙𝑒

max𝑗∈𝑊 𝑙 𝑗
. (9)

In Eq. 9, 𝑙𝑒 is normalised, and𝑊 is the set of all Way entities. The
second picture in Fig. 3 facilitates the identification of the main
transportation hubs in Singapore, and highlights arterial roads that
connect different areas of the city. Due to the absence of human
mobility data in OSM, we decide to use relations to further refine the
representation of road segments, initially based on context alone.
Specifically, the embedding𝒉𝑟 of a road segment 𝑟 , associated with a
transportation link weight 𝑙𝑟 , is pushed closer, in high-dimensional
space, to the embedding of another road with similar transportation
link functionality, independently of their distance. In this context,
two road segments 𝑟1 and 𝑟2 are considered similar if the difference
between their link weights is smaller than a given threshold 𝜃 (=
0.05). The set of road segments with similar transportation link
functionality to 𝑟𝑒 , is therefore defined as:

𝑠𝑖𝑚(𝑟𝑒 ) = { 𝑗 : | 𝑙𝑟𝑒 − 𝑙𝑟 𝑗 | < 𝜃 } (10)

The following loss function is minimized during the road-based
contrastive objective,

L𝑁𝐶𝐸𝑅 = − 1
𝑅

𝑅∑︁
𝑖

1
|𝑠𝑖𝑚(𝑟𝑖 ) |

∑︁
𝑗∈𝑠𝑖𝑚 (𝑟𝑖 )

𝑙𝑜𝑔(
𝑒𝑥𝑝 ( 𝒔

⊤
𝑖 𝒔 𝑗
𝜏 )∑𝑁

𝑘
𝑒𝑥𝑝 ( 𝒔

⊤
𝑖
𝒔𝑘
𝜏 )

), (11)

where R is the number of road segments, 𝒔𝒆 is the high-dimensional
representation for a road segment 𝑒 , initialised as in Eq. 3, and 𝑁 is
the number of randomly sampled negatives, with 𝑘 ∉ 𝑠𝑖𝑚(𝑟𝑖 ).
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Figure 3: Top: All the road segments traversed by at least one
bus loop, inOSMSingapore. Bottom: The same road segments,
weighted by number of bus loops traversing them.

4.2 Location Encoding
A geospatial entity is defined by its inherent characteristic of oc-
cupying a specific location on the planet, which is typically repre-
sented as a 2-dimensional point 𝑝 = (𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔). Recent studies have
proposed various location encoders, designed to project point-based
locations into high-dimensional vectors. In [47], the authors em-
ploy a fixed-size grid approach, mapping entities’ positions to grid
cells and learning high-dimensional representations for each cell.
In [12, 22], GeoHash is utilized to translate positions into strings,
representing specific cells on the surface of the Earth, and whose
size depends on the algorithm’s precision, specified by the user.
GeoVectors [35] initializes entities’ positions with random vectors,
and refines them through random walks with distance-dependent
transition probabilities, resulting in closer points having similar
representations. In Space2Vec [30], the authors encode point-based
locations with sinusoidal functions and a multi-layer perceptron, us-
ing several frequencies to form a global code-book of 2-dimensional
positions. Finally, SpaBERT [44] incorporates the location encoding
in the transformer’s architecture.

All the aforementioned approaches involve a training phase to
learn the parameters of the location encoder. However, consider-
ing the vector nature of positional data, where closer positions
exhibit higher similarity in the 2-dimensional vector space, we
argue that learned parameters are unnecessary. We follow the posi-
tional encoding for words in a sequence, introduced in the original
Transformer [36] architecture, to define a sinusoidal encoder as
follows:

𝑓 (𝑝𝑙 ) (𝑖 ) :=
{
𝑠𝑖𝑛(𝜔𝑘 · 𝑝𝑙 ) if 𝑖 = 2𝑘
𝑐𝑜𝑠 (𝜔𝑘 · 𝑝𝑙 ) if 𝑖 = 2𝑘 + 1

∀𝑙 = 0, 1 (12)

𝜔𝑘 =
𝜆

10000
2𝑘
𝑑

(13)

where 𝑑 (= 128) is the dimension of the encoding space, and 𝜆 (=
100) is a rescaling factor that we introduce to facilitate the subse-
quent learning model’s ability to capture the subtle differences that
occur between positions expressed in latitude and longitude. In Eq.
12, 𝑝0 is the latitude and 𝑝1 is the longitude, and the two vectors
are concatenated, leading to a 2𝑑-dimensional location encoding.
Finally, the wide range of frequencies ensures that the position is
represented at different granularity levels.

5 Experiments
The objective of this section is twofold. First, we aim to demonstrate
the effectiveness of foundation models pre-trained using CityFM,
when applied to downstream applications. We compare against
baselines that are specifically designed for each task, and trained
using downstream data directly. Second, we seek to showcase the
potential of utilizing data solely from Volunteered Geographic Infor-
mation sources, such as OpenStreetMap, which is freely available
and accessible globally, and how it can provide valuable information
to effectively address geospatial challenges of various type.

5.1 Experimental Settings
CityFM models are pre-trained using OSM data, on the three con-
trastive objectives presented in Sec. 4.1. We minimize the pre-
training loss L𝑝𝑡 , which is the sum of the task-specific losses:

L𝑝𝑡 = L𝑁𝐶𝐸𝑇 + L𝑁𝐶𝐸𝑉 + L𝑁𝐶𝐸𝑅 (14)

The model is trained until convergence with a learning rate of 10−4,
a batch size of 256, and a linearly decreasing learning rate sched-
uler with warm-up. While the framework allows for various text
and vision models, we use BERT-base-uncased and ResNet-18. The
rasterized images are generated with dimensions of 224x224. Fol-
lowing the pre-training phase, the model’s parameters are frozen,
and CityFM is utilized to generate meaningful representations for
the geospatial entities involved in the different downstream appli-
cations.

5.2 Traffic Speed Inference
In this road-based task, the average speed on each road segment is
utilized as the inference objective. The purpose is to evaluate the
quality of CityFM’s representation of road segments by predicting
the average speed at which taxis move on a road link. The data
source is Uber Movement, which provides Uber taxi speed data
mapped to OSM road segments. Road segments with less than 10
speed measurements are filtered out, obtaining 29,755 data points
for NYC, and 6,745 for Seattle.

5.2.1 Baselines. We compare our approach with a set of state-of-
the-art road network representation methods:
• Node2Vec [16] learns representations of nodes in a graph by
increasing the similarity between node pairs within 𝑛-hop neigh-
borhoods, obtained through random walks.

• GCWC [19] introduces the Graph Convolutional Weight Com-
pletion framework, which exploits the road network graph’s
topology and the correlation among adjacent edges to estimate
and fill in the missing weights in the network.
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Table 2: Results of Traffic Speed Inference, reporting mean and stddev of 10 independent runs. Speed measure is miles per hour.

NYC Seattle

Model RMSE ↓ MAE ↓ 𝑅2 ↑ MAPE ↓ RMSE ↓ MAE ↓ 𝑅2 ↑ MAPE ↓

Node2Vec [16] 6.82 5.31 0.38 32.22% 7.19 6.38 0.3715 31.24%
(± 0.12) (± 0.05) (± 0.04) (± 0.6%) (± 0.08) (± 0.07) (± 0.02) (± 0.1%)

GCWC [19] 6.74 5.2 0.4112 32.75% 7.14 5.71 0.4437 30.95%
(± 0.04) (± 0.04) (± 0.04) (± 1.2%) (± 0.06) (± 0.09) (± 0.01) (± 0.7%)

RFN [21] 6.45 4.83 0.46 30.1% 7.22 5.69 0.51 30.7%
(± 0.09) (± 0.02) (± 0.02) (± 0.01%) (± 0.02) (± 0.02) (± 0.0) (± 0.1%)

GeoVectors [35] 5.21 3.92 0.6423 24.03% 6.43 4.99 0.601 25.23%
(± 0.07) (± 0.06) (± 0.06) (± 0.3%) (± 0.14) (± 0.13) (± 0.01) (± 1.5%)

IRN2Vec [37] 5.02 3.78 0.66 24.3% 6.11 4.74 0.6298 24.2%
(± 0.04) (± 0.02) (± 0.01) (± 0.0%) (± 0.26) (± 0.19) (± 0.03) (± 0.1%)

CityFM 4.08 3.2 0.7709 19.27% 4.9 3.79 0.7499 18.18%
(± 0.01) (± 0.01) (± 0.02) (± 0.8%) (± 0.05) (± 0.04) (± 0.02) (± 0.2%)

Table 3: Ablation study on the Traffic Speed Inference task. We restrict our model’s access to only one type of information at a
time, to assess their impact. In the last row we exclude the Road-based contrastive objective during pre-training.

NYC Seattle

Model RMSE ↓ MAE ↓ 𝑅2 ↑ MAPE ↓ RMSE ↓ MAE ↓ 𝑅2 ↑ MAPE ↓

CityFM (PE) 6.99 5.13 0.2811 31.86% 8.72 6.26 0.2184 30.55%
(± 0.01) (± 0.02) (± 0.03) (± 0.3%) (± 0.04) (± 0.05) (± 0.01) (± 0.5%)

CityFM (Tags) 6.24 5.01 0.4537 24.28% 6.34 4.81 0.4945 23.31%
(± 0.19) (± 0.11) (± 0.04) (± 0.5%) (± 0.05) (± 0.04) (± 0.01) (± 0.5%)

CityFM (Context) 5.85 4.76 0.5821 24.39% 5.84 4.71 0.609 23.97%
(± 0.01) (± 0.01) (± 0.02) (± 0.8%) (± 0.01) (± 0.01) (± 0.0) (± 0.2%)

CityFM (Context w/o Road-based c.o.) 6.06 4.99 0.5755 24.8% 5.92 4.73 0.6065 24.4%
(± 0.03) (± 0.03) (± 0.03) (± 0.7%) (± 0.02) (± 0.03) (± 0.02) (± 0.5%)

• Relational Fusion Network, RFN [21], is a modified Graph Con-
volutional Network (GCN), designed for road network settings.

• IRN2Vec [37] learns vector representations for intersections of
road networks, utilizing random walks to generate sequences of
adjacent intersections.

• GeoVectors [35] introduces an open corpus of embeddings for
OSM entities, which includes tags and location embeddings.

• CityFM utilizes road segment tags, positional encoding,and the
learned representation based on the entities in the road’s context.

5.2.2 Performance Analysis. We report the root mean square error
(RMSE), the mean absolute error (MAE), the coefficient of determi-
nation (𝑅2) and the mean absolute percentage error (MAPE), with
mean and standard deviation of 10 independent runs, in Table 2.
The speed of taxis is measured in miles per hour (mph), and the
average speed in NYC is 19.5 mph (𝜎 = 8.19), while in Seattle is
24.15 mph (𝜎 = 10.18). CityFM achieves the best results on both
the datasets, with a mean absolute error of 3.2 mph in NYC dataset
and 3.79 mph in Seattle’s. All the baselines, with the exception of
GeoVectors and ours, consider the road network as a (un-) directed
graph, and use Graph Convolutional Networks.While this approach
effectively highlights road connectivity and attribute propagation,
it may under-perform in a real world scenario where measurements
are limited to only a small subset of road segments, and additional
information need to be incorporated.

The ablation study in Table 3, shows that the contextual view
of road segments emerges as a strong predictor for inferring the
average speed at which taxis travel. The entities surrounding a road
provide valuable information on its usage and traffic patterns, and
serve as a replacement for missing polyline annotations. The posi-
tional encoding (PE), while being the weakest predictor, encodes
road segments’ absolute positions, allowing CityFM to capture spa-
tial relationships between them.

5.3 Building Functionality Classification
As demonstrated in Figure 2, CityFM is capable of associating build-
ing shapes to their respective functionalities. This is accomplished
through the Vision-Language contrastive objective, which leverages
the OSM buildings that have tags associated with them. Consider-
ing that a significant portion of OSM polygons remains untagged,
this represents an opportunity to use CityFM to annotate untagged
entities, or to assist human annotators in doing so. We chose to
evaluate the performance of CityFM using Singapore Governmen-
tal data3, which provides detailed land use information at the level
of individual buildings. The dataset consists of 64,384 polygons that
belong to one of 8 classes. Detailed statistics about the dataset can
be found in Table 4. We divided it into training (50%), validation
(25%) and test (25%) sets.

3https://www.ura.gov.sg/maps/?service=MP
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Table 4: Statistics of the Building Functionality Classification
dataset. Number of instances and percentage of the total.

Functionality N. of Instances Percentage

Residential 43,224 67.1%
Industrial 10,431 16.2%

Commercial 5,190 8.1%
Commercial & Residential 1,645 2.5%

Educational 1,427 2.2%
Civic & Community Institution 1,205 1.9%

Sports & Recreation 751 1.2%
Transport 511 0.8%

Table 5: Results of building functionality classification. The
baselines are grouped by data type (visual, textual, spatial)
they can process. Best overall performance is in bold, best
performance using a specific data type is underlined.

Type Model macro-F1 weighted-F1 Accuracy

v ResNet-18 [Frozen]
11.4% 51.19% 55.33%
(± 0.4%) (± 0.8%) (± 0.2%)

v ResNet-18 25.09% 64.71% 67.14%
(± 0.7%) (± 1.1%) (± 1.1%)

v CityFM-Visual 38.26% 70.16% 65.93%
(± 0.2%) (± 0.3%) (± 0.2%)

t BERT [Frozen] 34.02% 35.24% 43.41%
(± 0.2%) (± 0.5%) (± 0.6%)

t BERT 37.56% 44.19% 51.77%
(± 0.3%) (± 0.7%) (± 0.7%)

t CityFM-Textual 49.23% 73.42% 69.16%
(± 0.6%) (± 0.2%) (± 0.2%)

s + t GeoVectors 47.24% 64.18% 69.49%
(± 1.4%) (± 2.1%) (± 1.5%)

s + t SpaBERT 45.06% 78.47% 75.95%
(± 1.1%) (± 2.4%) (± 2.7%)

v + t CLIP 43.03% 80.7% 74.98%
(± 1.1%) (± 1.6%) (± 1.2%)

s + v + t CityFM 70.1% 92.75% 91.93%
(± 1.7%) (± 1.2%) (± 1.3%)

Table 6: Category-specific performance.

Functionality GeoVectors SpaBERT CityFM

Residential 76.97% 82.15% 96.03%
Industrial 70.57% 74.25% 94.65%

Commercial 88.22% 66.66% 87.07%
Comm. & Res. 21.08% 18.14% 46.29%
Educational 57.98% 46.05% 73.00%

Civic & Commun. Inst. 13.82% 12.46% 24.92%
Sports & Recr. 31.73% 38.62% 69.76%
Transport 21.84% 17.09% 61.53%

5.3.1 Baselines. We compare CityFM with baselines that are capa-
ble of handling textual, visual and/or geospatial information:
• BERT [14] is a pre-trained LM that serves as the foundation of
CityFM’s textual encoding model. We evaluate its performance
in two settings: with frozen weights, where only a 2-layers MLP
is trained on top of it, and when fine-tuned on the task.

• ResNet-18 [18] is a pre-trained CNN-based, vision algorithm
that serves as the foundation of CityFM’s visual encoding model.

• CLIP [34] is a contrastive Language-Image pre-trained algorithm.
We use it to encode polygons’ visual characteristics and the
textual information from nearby entities. The model is fine-tuned.

• Weuse theGeoVectors [35] corpus to retrieve the location encod-
ing of the untagged polygon and the GeoVectors-tags embeddings
to represent the entities in its spatial proximity.

• Weuse SpaBERT [44] to encode the name attribute of the entities
that form the context of the untagged building to be classified.

• CityFM is capable of encoding the visual characteristics of a
polygon, its position, and the textual features of nearby entities.

5.3.2 Performance Analysis. Table 5 shows the overall best results
in bold font, and the best results within a given baseline type un-
derscored. CityFM’s textual and visual components, although not
fine-tuned on this task, perform better than algorithms that we
trained specifically for the it. ResNet-18, when fine-tuned, achieves
higher accuracy. GeoVectors [35], SpaBERT [44] and CLIP [34],
being able to process multi-modal information, represent strong
baselines. CityFM, is capable of producing meaningful representa-
tions for the textual and visual characteristics of geospatial entities,
and can encode positions in the space, achieving the best results.

In Table 6, we illustrate the F1-scores of GeoVectors, SpaBERT
and CityFM for each category of the building functionality classifi-
cation task. We specifically chose to compare to GeoVectors and
SpaBERT, as they represent direct competitors in utilizing data from
volunteered geospatial information sources, and a pre-training ap-
proach to generate general purpose representations. The results
reveal a performance gap between the two approaches and CityFM.

5.4 Population Density Estimation
In this task, our objective is to estimate the average population
density in different regions of NYC and Singapore.The primary goal
of this task is to demonstrate that the representations produced by
CityFM can be used in aggregation to effectively represent regions.

5.4.1 Baselines. The baselines are region embedding methods:
• Place2Vec [41] learns entities’ representations based on their
spatial co-occurrence, inspired by word2vec’s algorithm [31].

• Urban2Vec was proposed in [38], and learns a low-dimensional
representation for each urban region utilizing images and POIs
from the region itself.

• We retrieve from the GeoVectors [35] corpus the locations and
tags encodings for all the spatial entities inside a region, and
utilize an average aggregation function.

• HGI [20] uses Hierarchical Graph Infomax to learn representa-
tions at the POI- and region-levels.

• We use SpaBERT [44] pre-trained LM to encode the entities in
each region, and we aggregate them by computing the mean of
their representations.
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Table 7: Estimation of population density.

Singapore NYC

Model RMSE ↓ MAE ↓ 𝑅2 ↑ RMSE ↓ MAE ↓ 𝑅2 ↑

Place2Vec
10.09 7.1 0.17 10.95 8.49 0.25
(± 0.3) (± 0.21) (± 0.05) (± 0.35) (± 0.24) (± 0.02)

Urban2Vec
5.76 4.48 0.59 6.31 5.94 0.66
(± 0.04) (± 0.04) (± 0.04) (± 0.06) (± 0.09) (± 0.01)

GeoVectors
6.38 5.2 0.51 7.56 6.09 0.58
(± 0.23) (± 0.27) (± 0.06) (± 0.3) (± 0.22) (± 0.01)

HGI
5.31 4.06 0.57 6.15 4.18 0.72
(± 0.57) (± 0.31) (± 0.05) (± 0.23) (± 0.17) (± 0.02)

SpaBERT
6.89 4.85 0.49 8.08 5.69 0.51
(± 0.68) (± 0.43) (± 0.05) (± 0.19) (± 0.16) (± 0.03)

CityFM
4.31 2.75 0.82 5.95 4.26 0.72
(± 0.22) (± 0.18) (± 0.04) (± 0.27) (± 0.2) (± 0.02)

• We utilize the representations that CityFM produces for the tex-
tual annotations of the entities, the visual shapes of the polygons
located inside a region, and the position of the region itself.

5.4.2 Performance Analysis. The results are reported in Table 7.
Population density is expressed in thousands of people per square
kilometer. GeoVectors explicitly encodes textual and spatial infor-
mation of the entities, producing more meaningful representations.
Urban2Vec only implicitly represents spatial proximity, through
its contrastive objective. However, it utilizes both textual and vi-
sual information, achieving higher performance. SpaBERT under-
performs on this particular task, probably due to its inability to
capture the proximity among regions. HGI, being a recent algorithm
specifically tailored for region-level tasks, performs comparably to
CityFM on the NYC’s dataset.

6 Related Work
6.1 Pre-trained Foundation Models
Despite their success in many domains, there exists very little work
exploring the development of PFMs for geospatial artificial intel-
ligence [29]. GeoVectors [35] is an open corpus of OSM entities’
representations. It is a framework to efficiently produce embed-
dings for a representative set of snapshots of OSM, using FastText
[7] for the textual annotations and random walks to learn a rep-
resentation of the entities’ locations. Given that the embeddings
are task-agnostic, this can be regarded as an initial effort towards
general-purpose representations of geospatial entities. More re-
cently, the authors of SpaBERT [44] proposed a framework to train
an LLM, initialized with BERT’s weights, using geospatial data.
SpaBERT is capable of producing representations only for the tex-
tual part of OSM nodes. In contrast with CityFM, SpaBERT uses
entities’ names and does not incorporate their tags. Finally, existing
works are not designed to handle different entity types.

6.2 Downstream Tasks
6.2.1 Traffic Speed Inference. In this task, the objective is to infer
the average speed at which the traffic moves on unseen roads. This
problem has been studied extensively by researchers. GCWC [19]
utilizes only the topology of the road network through GCNs, and

stochastic weight completion to predict edge weights. Relational
Fusion Networks (RFNs) [21] were proposed as an alternative to
classical GCNs, to specifically model road networks. In previous
works the road network has been treated as a graph. In real world
scenarios, where measurement are often available for a limited
amount of road segments, and road-level features are sparsely dis-
tributed, algorithms relying solely on information propagation may
not yield satisfactory performance. CityFM considers contextual
information by utilizing entities located in proximity of the road,
and taking into account the road’s absolute spatial position, which
helps the model learn how roads are used in the city.

6.2.2 Building Functionality Classification. In order to evaluate the
quality of our embeddings, we chose to classify the functionality of
OSM untagged buildings, given that visual, textual and positional
information can be leveraged in this task. This represents a step
forward towards automatically annotating geospatial databases.
However, this problem has not been studied extensively enough. In
[1], the authors use machine learning techniques and a set of fea-
tures to classify buildings of various types. The approach presents
several drawbacks, such as the use of OSM tags and building use
codes from external sources, as input features. In [28], researchers
used LiDAR features with ML models to to discern between residen-
tial and non-residential buildings. Other studies, have harnessed
airborne laser scanning data [6] and heat consumption [40]. Exist-
ing approaches have utilized information from different sources,
which are available only in selected areas, and functionality infor-
mation of different types, such as OSM tags and land use labels.

6.2.3 Population Density Estimation. Population density estima-
tion in urban regions has crucial consequences in urban planning
and resource allocation, and is an important signal of socioeconomic
development. Place2Vec [41] is designed to learn POIs categories
embeddings, by maximizing the similarity of categories that are
often observed in spatial proximity. In contrast, Urban2Vec [38]
utilizes multimodal data: the textual tokens of POIs’ tags and street
view images are mapped to the same embedding space, using a
triplet loss function. Recently, HGI [20] was proposed to learn enti-
ties’ and regions’ representations jointly and in a self-supervised
fashion. Compared to CityFM, existing approaches suffer from two
main drawbacks: first, they are tailored specifically for region rep-
resentation learning and cannot be used in different applications;
secondly, they are designed to handle limited multimodal data.

7 Conclusions
This study, presents a novel framework to pre-train foundation
models, in a target geographical area of interest. This is a step
forward towards a wider adoption of general purpose AI algorithms
to address urban challenges. CityFM relies exclusively on OSM
data, facilitating its adoption and reproducibility. Its multimodal
capabilities enable it to access diverse entity types, and learn better
representations, using different aspects of each entity, which result
in its superior performance.
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